Jintan Hitam: Pencegah Kerusakan Endotel karena Rokok

Authors

Dr. Meity Ardiana, dr., SpJP(K)
Universitas Airlangga

Keywords:

Jintan Hitam, Rokok, Kerusakan Endotel, asap rokok

Synopsis

Jintan hitam telah digunakan sebagai obat tradisional di seluruh dunia, terutama di Mediterania yang mengalami penurunan angka kematian akibat penyakit jantung dan pembuluh darah dibandingkan negara-negara Eropa Utara. Telah banyak penelitian yang membuktikan manfaat jintan hitam pada kesehatan berbagai sistem organ, seperti peredaran darah, jantung, paru-paru, hingga imunitas. Terdapat banyak kandungan-kandungan kimiawi pada jintan hitam yang berkontribusi dalam khasiatnya bagi kesehatan. Namun, kandungan-kandungan ini bervariasi pada jintan hitam sesuai dengan daerah penanamannya. Variasi ini tentunya memengaruhi efek biologis dan farmakodinamis jintan hitam pada tubuh. Keterbatasan referensi yang ada mengenai pengaruh jintan hitam yang dibiakkan secara lokal terhadap pencegahan kerusakan pembuluh darah akibat asap rokok mendorong penulis untuk menyusun buku monografi ini, hingga penulis mengulas khasiat jintan hitam yang ditanam di Indonesia bagi kesehatan pembuluh darah. Hal ini diharapkan dapat menambah khazanah pengetahuan bagi pembaca dan dapat menjadi referensi untuk penelitian lebih lanjut mengenai manfaat jintan hitam lokal.

Downloads

Download data is not yet available.

References

WHO global report on trends in prevalence of tobacco smoking [Internet]. Apps.who.int. 2020 [cited 20 November 2020].

Aditama T. Smoking problem in Indonesia. Medical Journal of Indonesia. 2002;56.

Ahsan A, Wiyono N, Kiting A. Bunga Rampai Fakta Tembakau dan Permasalahannya di Indonesia. 5th ed. Jakarta: Kemkes RI; 2014.

Kemkes. Riset Kesehatan Dasar 2013 [Internet]. Jakarta: Kemkes; 2013 [cited 20 November 2020]. Available from: htt ps://www.kemkes.go.id/resources/ download/general/Hasil%20Riskesdas%202013.pdf

Kemkes. Potret Sehat Indonesia dari Riskesdas 2018. 1st ed. Jakarta: Kemkes; 2018.

Smiljic S. The clinical signifi cance of endocardial endothelial dysfunction. Medicina. 2017;53(5):295-302.

Nedeljkovic Z. Mechanisms of oxidative stress and vascular dysfunction. Postgraduate Medical Journal. 2003;79(930):195-200.

de Gaetano M, Crean D, Barry M, Belton O. M1- and M2-Type Macrophage Responses Are Predictive of Adverse Outcomes in Human Atherosclerosis. Frontiers in Immunology. 2016;7.

Shah P. Pathogenesis of Atherosclerosis. Essential Cardiology. 2013:377-386.

Münzel T, Gori T, Bruno R, Taddei S. Is oxidative stress a therapeutic target in cardiovascular disease?. European Heart Journal. 2010;31(22):2741-2748.

Sahak M, Kabir N, Abbas G, Draman S, Hashim N, Hasan Adli D. The Role ofNigella sativaand Its Active Constituents in Learning and Memory. Evidence-Based Complementary and Alternative Medicine. 2016;2016:1-6.

Al-Turkmani, M., Karabet, F., Mokrani, L., Soukkarieh, C. Chemical composition and in vitro antioxidant activities of essential oil from Nigella sativa L. seeds cultivated in Syria. Int. J. Chem. Tech. Res. 2015;8(10), 76-82.

Sabzghabaee A, Dianatkhah M, Sarrafzadegan N, Asgary S, Ghannadi A. Clinical Evaluation of Nigella Sativa Seeds for the Treatment of Hyperlipidemia: a Randomized, Placebo Controlled Clinical Trial. Medical Archives. 2012;66(3):198.

Gargari, B.P., Ebrahimzadeh-attary, V., and Rafraf, M. Effect of dietary supplementation with Nigella sativa L. on serum lipid profile, lipid peroxidation and antioxidant defense system in hyperlipidemic rabbits. J. Med. Plant. Res. 2009; 3(10), 815–821. htt ps://doi.org/ISSN 1996-0875

Klabunde R. Cardiovascular Physiology Concept. 2nd ed. New York: Wolters Kluwer Medical; 2012.

Taylor A, Bordoni B. Histology, Blood Vascular System [Internet]. Ncbi.nlm.nih.gov. 2020 [cited 20 November 2020]. Available from: https://www.ncbi. nlm.nih.gov/books/NBK553217/

Storch, A.S., Matt os, J.D. de, Alves, R., Galdino, I. dos S., and Rocha, H.N.M. Methods of Endothelial Function Assessment: Description and Applications. Int. J. Cardiovasc. Sci. 2017; 30(3), 262–273.

Mudau M, Genis A, Lochner A, Strijdom H. Endothelial dysfunction: the early predictor of atherosclerosis. Cardiovascular Journal of Africa. 2012;23(4): 222-231.

A L, JC B. Intact and altered endothelium in regulation of vasomotion [Internet]. PubMed. 2020 [cited 26 November 2020]. Available from: https://pubmed.ncbi.nlm.nih.gov/1424046//

Anderson TJ. Assessment and treatment of endothelial dysfunction in humans. J Am Coll Cardiol. 1999; 34: 631–638.

Incalza M, D’Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascular Pharmacology. 2018; 100:1-19.

Celermajer DS, Sorensen KE, Bull C, et al. Endothelium-dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their interaction. J Am Coll Cardiol. 1994; 24: 1468–1474.

Widlansky M, Gokce N, Keaney J, Vita J. The clinical implications of endothelial dysfunction. Journal of the American College of Cardiology. 2003;42(7):1149-1160.

Libby P, Ridker P, Hansson G. Infl ammation in Atherosclerosis. Journal of the American College of Cardiology. 2009;54(23):2129-2138.

U.S. Department of Health and Human Services. How Tobacco Smoke Causes Disease: The Biology and Behavioral Basis for Smoking-Att ributable Disease: A Report of the Surgeon General. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Offi ce on Smoking and Health. 2010.

Park K, Park W. Endothelial Dysfunction: Clinical Implications in Cardiovascular Disease and Therapeutic Approaches. Journal of Korean Medical Science. 2015;30(9):1213.

Ichiki T. Collaboration between smokers and tobacco in endothelial dysfunction. Cardiovascular Research. 2011;90(3):395-396.

Teixeira B, Lopes A, Macedo R, Correa C, Ramis T, Ribeiro J et al. Infl ammatory markers, endothelial function and cardiovascular risk. Jornal Vascular Brasileiro. 2014;13(2):108-115.

Zhang J, Cao Y, Xu C, Edvinsson L. Lipid-soluble smoke particles damage endothelial cells and reduce endothelium-dependent dilatation in rat and man. BMC Cardiovascular Disorders. 2006;6(1).

Ley K, Huo Y. VCAM-1 is critical in atherosclerosis. Journal of Clinical Investigation. 2001;107(10):1209-1210.

Neunteufl T, Heher S, Kostner K, Mitulovic G, Lehr S, Khoschsorur G et al. Contribution of nicotine to acute endothelial dysfunction in long-term smokers. Journal of the American College of Cardiology. 2002;39(2):251-256.

Lau P, Li L, Merched A, Zhang A, Ko K, Chan L. Nicotine Induces Proinflammatory Responses in Macrophages and the Aorta Leading to Acceleration of Atherosclerosis in Low-Density Lipoprotein Receptor −/− Mice. Arteriosclerosis, Thrombosis, and Vascular Biology. 2006;26(1): 143-149.

Napoli C, de Nigris F, Williams-Ignarro S, Pignalosa O, Sica V, Ignarro L. Nitric oxide and atherosclerosis: An update. Nitric Oxide. 2006;15(4): 265-279.

Ambrose J, Barua R. The pathophysiology of cigarette smoking and cardiovascular disease. Journal of the American College of Cardiology. 2004;43(10):1731-1737.

Donohue J. Ageing, smoking and oxidative stress. Thorax. 2006;61(6): 461-462.

He Z, Chen Y, Hou C, He W, Chen P. Cigarett e Smoke Extract Changes Expression of Endothelial Nitric Oxide Synthase (eNOS ) and p16(INK4a) and is Related to Endothelial Progenitor Cell Dysfunction. Medical Science Monitor. 2017;23:3224-3231.

Messner B, Bernhard D. Smoking and Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology. 2014;34(3):509-515.

Yamaguchi Y, Haginaka J, Morimoto S, Fujioka Y, Kunitomo M. Facilitated nitration and oxidation of LDL in cigarette smokers.Eur J Clin Invest. 2005; 35:186–193.

Grant R, Drummond GR, Cai H, et al. Transcriptional and postt ranscriptional regulation of endothelial nitric oxide synthase expression by hydrogen peroxide. Circ Res. 2000; 86: 347–354.

Li H, Oehrlein SA, Wallerath TH, et al. Activation of protein kinase C alpha and/or epsilon enhances transcription of the human endothelial nitric oxide synthase gene. Mol Pharmacol. 1998; 53: 630–637.

Hink U, Li H, Mollnau H, et al. Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res. 2001; 88: E14–E

Gutt erman DD. Vascular dysfunction in hyperglycemia: is protein kinase C the culprit?. Circ Res. 2002; 90: 5–7.

Wooten JB, Chouchane S, McGrath TE. Tobacco smoke constituents aff ecting oxidative stress. In: Halliwell Barry B, Poulsen Henrik E., editors. Cigarett e Smoke and Oxidative Stress. Springer-Verlag; Berlin Heidelberg: 2006.

Kumar U, Mishra M, Prakash V. Assessment of antioxidant enzymes and free radical scavenging activity of selected medicinal plants. Free Radicals and Antioxidants. 2012;2(3):58-63.

Jaimes E, DeMaster E, Tian R, Raij L. Stable Compounds of Cigarette Smoke Induce Endothelial Superoxide Anion Production via NADPH Oxidase Activation. Arteriosclerosis, Thrombosis, and Vascular Biology. 2004;24(6):1031-1036.

Marwan, M., Widjajanto, E., Karono, S. The Eff ect of Black Seed Crude Extract (Nigella sativa) on GSH and MDA Level, Number and Function of Lung Alveolar Macrophage of Wistar Rat which Exposed by Chronic Cigarett e Smoke. Jurnal Kedokteran Brawijaya, XXI(5). 2005; 6–8

Ardiana, M., Santoso, A., Hermawan, H.O., Nugraha, R.A., Pikir, B.S., Suryawan, I.G.R. Acute eff ects of cigarett e smoke on Endothelial Nitric Oxide synthase, vascular cell adhesion molecule 1 and aortic intima media thickness. F1000Research 2021, 10:396.

Karaçil Ermumucu M, Şanlıer N. Black Cumin (Nigella sativa) and Its Active Component on Thymoquinone: Eff ects on Health. Journal of Food and Health Science. 2017;170-183.

Hussain, D.A., and Hussain, M.M. Nigella sativa (black seed) is an eff ective herbal remedy for every disease except death – a Prophetic statement which modern scientists confi rm unanimously: A review. Adv. Med. Plant Res. 2016; 4(2), 27–57.

Ahmed, S., Alam, A., Husain, S., Ahmed, Z. and Shahabuddin, M. Shoneez. (Nigella sativa) and its therapeutic eff ect in Unani Medicine-A Review. IJPSR. 2015; 6(01),12–14.

Paul, N.H., Makozho, E.R., Choto, K., Mandikuwaza, G., Mutambanengwe, C.G., and Sibanda, E. Evidence-Based Strategy for Cancer Prevention: Advocating for the Adoption of Black Cumin (Nigella sativa) Herbal Gardens in Zimbabwe. Res. Rev. Med. Clin. Oncol. 2017; 1(2), 1–7.

Farah, N., Fauzi, A., Hidayah, N., Bakar, A., Mohamad, N., Hadzrullathfi , S., Fauzi, A. Nigella sativa Eff ects on Neurotransmitt er Systems: Potential Treatment for Drug Tolerance and Dependence. Int. J. Pharm. Res. Allied Sci.2018; 7(1):196-200

Islam, M.T., Guha, B., Hosen, S., Riaz, T.A., Shahadat, S., da Rocha Sousa, L., de Oliveira Santos, J.V., da Silva Júnior, J.J., de Lima, R.M.T., Braga, A.L., dos Reis, A.C., de Alencar, M.V.O.B., de Carvalho Melo-Cavalcante, A.A. Nigellalogy: A Review on Nigella Sativa. MOJ Bioequiv. 2017; 3(6):167‒181.

Musfi roh, M. and Gustari, S. The Eff ect of Black Seed (Nigella sativa L) Oil on Spermatogenesis of Wistar Rats Exposed by Cigarrete Smoke. Jurnal Kedokteran Hewan. 2015; 9(2), 114–116.

Hidayati, T and Habib, I. Antiimmunotoxic of Black Cumin Seed Oil (Nigella sativa Oil) in DMBA (Dimethylbenzantracene)-Induced Mice. Int. J. Pharm. Med. Biol. Sci. 2015;4(3), 171–174.

Tavakkoli, A., Mahdian, V., Razavi, B.M., and Hosseinzadeh, H. Review on clinical trials of black seed (Nigella sativa) and its active constituent, Thymoquinone. J. Pharmacopuncture. 2017; 20(3), 179–193.

Al-Naqeep, G., Al-Zubairi, A.S., Ismail, M., Amom, Z.H., and Esa, N.M. Antiaterogenic potential of nigella sativa seeds and oil in diet-induced hypercholesterolemia in rabbits. Evid. Based Complemen. Alternate. Med, 2011; 213628.

Mohammed, E.T., Hashem, K.S., Ramadan, M., and Rheim, A. Biochemical study on the impact of Nigella sativa and virgin olive oils on cadmiuminduced nephrotoxicity and neurotoxicity in rats. J. Investig. Biochem. 2014; 3(2). 71-78.

Botnick, I., Xue, W., Bar, E., Ibdah, M., Schwartz , A., Joel, D.M, Lev, E., Fait, A., Lewinsohn, E. Distribution of primary and specialized metabolites in Nigella sativa seeds, a spice with vast trdaitional and historical uses. J. Molecules. 2012.

Kliebsentein. Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant Cell Environ. 2014; 27(6), 675-684.

Cirak, C., Radusiene, J., Ivanauskas, L., Jakstas, V., Camas, N. 2015. Population variability of main secondary metabolites in Hypericum lydium Boiss. (Hypericaceae). Iran. J. Pharm. Res. 2015; 14, 969-978.

Bourgaud, F., Gravot, A., Milesi, S., Gontier, E. Production of plant secondary metabolites: A historical perspective. Plant. Sci. 2001; 161(5):839-851.

Lewinsohn E, Botnick I, Xue W, Bar E, Ibdah M, Schwartz A, Joel DM, Lev E, Fait A. Distribution of primary and specialized metabolites in Nigella sativa seeds, a spice with vast traditional and historical uses. J Molecules. 2012;17: 10159-10177.

Iqbal, M.S., Ahmad, A., and Pandey B. 2018. Solvent based optimization for extraction and stability of Thymoquinone from Nigella sativa Linn. and its quantification using RP-HPLC. Physiol Mol. Biol. Plants. 2018;24(6): 1209-1219.

Mardisiwi, R.S. Kurniawati, A., Sulistyono, E., dan Faridah, D.R. Pertumbuhan Tanaman dan Produksi Timokuinon Jintan Hitam pada Beberapa Komposisi Media Tanam dan Interval Penyiraman. Sekolah Pascasarjana Institut Pertanian Bogor. J. Agron. Indonesia. 2018;46(1):89-94

Ashurst, J.V., and Nappe, T.M. Toxicity, Methanol. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2019.

Kazemi, M. Chemical composition and antioxidant properties of the essential oil of Nigella sativa L. Bangladesh J. Botany. 2015; 44(1), 111-116.

Amina, B. Toxicity and anti-oxidant activity of the essential oil of Nigella sativa. Der. Pharmacia Lett re. 2016;8(15), 245–249.

Youssef, A., Madkour, K., Cox, C. and Weiss, B. 1992. Comparative lethality of methanol, ethanol and mixtures in female rats. J. Appl. Toxicol. 1992; 12(3), 193–197.

Mansour, M.A., Nagi, M.N., El-Khatib, A.S., dan Al-Bekairi, A.M. Eff ects of thymoquinone on antioxidant enzyme activities, lipid peroxidation and DT diaphorase in different tissues of mice: a possible mechanism of action. Cell Biochemistry and Function. 2002; 20(2), 143–151.

Guergouri, F.Z., Sobhi, W., and Benboubetra, M. Antioxidant activity of Algerian Nigella sativa total oil and its unsaponifiable fraction. Int. J. Phytopharm. 2017;6(4), 234–238.

Kanter, M., Meral, I., Dede, S., Cemek, M., Ozbek, H., Uygan, I., and Gunduz, H. Eff ects of Nigella sativa L. and Urtica dioica L. on lipid peroxidation, antioxidant enzyme systems and some liver enzymes in CCl4-treated rats. J. Vet., Med. Physiol. Pathol. Clin. Med. 2003;50(5), 264-268.

Meral, I., Yener, Z., Kahraman, T., Mert, N. Eff ect of Nigella sativa on glucose concentration, lipid peroxidation, antioxidant defence system and liver damage in experimentally induced diabetic rabbits. J. Vet. Med. Physiol. Pathol. Clin. Med. 2015;48 (10), 593-9.

Er ̧sahin., M., Toklu, H. Z., Akakin, D., Yuksel, M., Yegĕn, B.C., Sener, G. The effects of Nigella sativa against oxidative injury in a rat model of subarachnoid hemorrhage. Acta Neurochir. 2011;153, (2), 333–341.

Sadik, I., Allah, A.A., Abdulhameed, M., and Abdelkader, M. 2017. Antioxidant activity and in-vitro Potential inhibition of Nigella sativa and Saussurea lappa against LDL oxidation among Sundance, E3 Journal of Medical Research.2017;6(3), 022-026.

Houcher, Z, Boudiaf, K., Benboubetra, M., and Houcher, B. Effects of Methanolic Extract and Commercial Oil of Nigella sativa L. on Blood Glucose and Antioxidant Capacity in Alloxan-Induced Diabetic Rats. Pteridines. 2007;18(1), 8-18.

Alsuhaibani, A.M.A. Effect of Nigella sativa against cisplatin induced nephrotoxicity in rats. Ital. J. Food. Saf. 2018;7(2), 7242.

Abbasnezhad, A., Hayadavoudi, P., Niazmand, S., and Mahmoudabady, M. 2014. The eff ects of hydroalcoholic extract of Nigella sativa seed on oxidative stress in hippocampus of STZ-induced diabetic rats. Avicenna J Phytomed, 5 (4), 333-340.

Kaleem, M., Kirmani, D., Asif, M., Ahmed, Q., Bano, B. Biochemical eff ects of Nigella sativa L seeds in diabetic rats. Indian J. Exp. Biol. 2006;44: 745-748.

Gholamnezhad, Z., Boskabady, M.H., and Hosseini, M. Eff ect of Nigella sativa on immune response in treadmill exercised rat. BMC Complement. Altern. Med 2014;14(1), 1–11.

Al-Asoom, L.I. Coronary angiogenic eff ect of long-term administration of Nigella sativa. BMC Complement Altern Med. 2017;17(308), 1–7.

Ardiana, M., Utami, E.R., Pikir, B.S., Santoso, A. Preventive eff ect of Nigella sativa on M1/M2 ratio, reducing risk of endothelial dysfunction in cigarett e smoked Wistars. F1000Research. 202110:917.

Hadad, G.M., Abdel, S.R.A., Soliman, R.M., Mesbah, M.K. High-Performance Liquid Chromatography Quantifi cation of Principal Antioxidants in Blackseed (Nigella sativa L.) Phytopharmaceuticals. J. AOAC Int. 2012;95 (4).

Velho-Pereira, R.M., Barhate, C.R., Kulkarni, S.R., Jagtap, A.G. Validated highperformance thin-layer chromatographic method for the quantifi cation of thymoquinone in Nigella Sativa extracts and formulations. Phytochem. Anal, 2011;22(4), 367–373.

Koshak, A.E. Yousif, N.M., Fiebich, B.L., Koshak, E.A., and Heinrich, M. Comparative immunomodulatory activity of Nigella sativa L. preparations on proinfl ammatory mediators: A focus on asthma. Front. Pharmacol. 2018; 9.1–11.

McConnell, E.L., Basit, A. W. and Murdan, S. 2008. Measurements of rat and mouse gastrointestinal pH, fl uid and lymphoid tissue, and implications for in-vivo experiments. J. Pharm. Pharmacol. 2008;60(1), 63–70.

Yang, G.H., Li, Y.C., Wang, Z.Q., Liu, B., Ye, W., Ni, L, Liu, C.W. Protective eff ect of melatonin on cigarett e smoke-induced restenosis in rat carotid arteries after balloon injury. J. Pineal. Res. 2014;57(4), 451–458.

Teasdale, J.E., Hazell, G., Newby, A.C., and White, S.J. Paradoxical eff ects of cigarett e smoke extract and high laminar fl ow on tumour necrosis factor-alpha induced VCAM-1 up-regulation – Implications for endothelial dysfunction. Atherosclerosis. 2014;237(2), e13–e14.

Pott , G.B., Tsurudome, M., Bui, J., Banfi eld, C., Hourieh, S., Pratap, H., and Goalstone, M.L. VCAM-1 Mediates Cigarett e Smoke Extract Enhancement of Monocyte Adhesion to Human Carotid Vascular Endothelial Cells. Med. Res. Arch. 2017;5(7).

Mu, W., Chen, M., Gong, Z., Zheng, F., and Xing, Q. Expression of vascular cell adhesion molecule-1 in the aortic tissues of atherosclerotic patientsand the associated clinical implications. Exp. Ther. Med. 2015;10(2), 423-428.

Farhangi, M.A., and Tajmiri, S. 2020. The eff ects of powdered black cumin seeds on markers of oxidative stress, intracellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 in patients with Hashimoto’s thyroiditis. Clin. Nutr. ESPEN. 2020;37: 207-212.

Khan, B.V., Harrison, D.G., Olbrych, M.T., Alexander, R.W., and Medford, R.M. 1996. Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proceedings of the National Academy of Sciences. 1996;93(17), 9114-9119.

De Caterina, R., Libby, P., Peng, H.B., Thannickal, V.J., Rajavashisth, T.B., Gimbrone, M.A., and Liao, J.K. 1995. Nitric oxide decreases cytokineinduced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J. clin. Inves. 1995;96(1), 60-68.

Umar, S., Hedaya, O., Singh, A.K., and Ahmed, S. Thymoquinone inhibits TNF-α-induced infl ammation and cell adhesion in rheumatoid arthritis synovial fi broblasts by ASK1 regulation. Toxicol. App. Pharma. 2015; 287(3), 299–305.

BISAC

  • MED010000 Medical / Cardiology

Published

August 5, 2023

Details about the available publication format: Unduh di Google Play

Unduh di Google Play

ISBN-13 (15)

978-602-473-908-9

Date of first publication (11)

2023-01-01

Details about the available publication format: Preview

Preview

ISBN-13 (15)

978-602-473-908-9

Date of first publication (11)

2023-01-01