Penerapan Teori Kontrol Optimal Pada Model Penyebaran Penyakit
Keywords:
Pemodelan Matematika, Kontrol Optimal, Penyakit menular, Estimasi ParameterSynopsis
Pemodelan matematika merupakan salah satu cabang dibidang matematika terapan. Pemodelan adalah proses mengkonstruksi dan memformulasikan sebuah model dari suatu sistem nyata. Pendekatan umum dalam pemodelan matematika adalah memformulasikan model matematika dari suatu fenomena, menyelesaikan model baik secara analitik maupun komputasi numerik, melakukan validasi model dan mengembangkan rekomendasi untuk peningkatan kinerja. Pemodelan matematika dalam epidemiologi menjadi alat yang efektif untuk memahami dan mengilustrasikan dinamika penyebaran penyakit menular seperti Malaria, Demam Berdarah Dengue (DBD), Tuberculosis (TB), HIV/AIDS, Campak, Hepatitis, Kolera, Influenza, COVID-19 serta penyakit menular lainnya. Untuk menganalisis faktor biaya dalam pengendalian penyakit menular, teori kontrol optimal dapat diaplikasikan. Kontrol optimal adalah cabang matematika terapan yang dikembangkan untuk menemukan cara optimal dalam mengatur sistem dinamik. Penerapan pemodelan matematika dan kendali optimal pada pengendalian penyebaran penyakit menular akan menjadi pokok bahasan pada kajian ini. Sebagai studi kasus, kami mengelompokkan tiga tipe model penyebaran penyakit menular yang akan dibahas yakni penyakit Malaria yang ditularkan dengan perantara nyamuk (vector), penyakit Tuberkulosis (TB) dan terakhir adalah penyakit COVID-19 yang menjadi pandemi di di seluruh dunia pada tahun 2020-2022.
Downloads
References
Agusto, F. B. & Elmojtaba, I. M., 2017. Optimal control and cost-effective analysis of malaria/visceral leishmaniasis co-infection. PloS One, Volume 12, p. e0171102.
Ahmadin & Fatmawati, 2014. Mathematical modeling of drug resistance in tuberculosis transmission and optimal control treatment. Applied Mathematical Sciences, Volume 8, p. 4547 – 4559.
Aneke, S. J., 2002. Mathematical modelling of drug resistant malaria parasites and vector populations. Math. Meth. Appl. Sci., Volume 25, pp. 335 - 346.
Arabia, K. o. S., 2021. Novel Coronavirus (COVID-19). [Online]
Available at: https://www.moh.gov.sa/en/HealthAwareness/EducationalContent/Corona/Pages/coro
[Accessed 18 Juni 2021].
Bailey, N. T. J., 1982. The biomathematics of malaria. London: Charles Grifin & Company Ltd.
Blayneh, K., Cao, Y. & Kwon, H., 2009. Optimal control of vector-borne diseases: treatment and prevention. Discr. Contin. Dyn. Syst. Ser. B, Volume 11, pp. 1-20.
Blayneh, K., Cao, Y. & Kwon, H., 2009. Optimal control of vector-borne diseases: treatment and prevention. Discr. Contin. Dyn. Syst. Ser. B, Volume 11, pp. 1-20.
Boni, M. F., Smith, D. L. & Laxminarayan, R., 2008. Benefits of using multiple first-line therapies against malaria. PNAS, Volume 105, pp. 14216-14221.
BPS, 2017. Life expectancy of Indonesia. [Online]
Available at: https://www.bps.go.id/dynamictable/2018/04/16/1298/angka-harapan-hidup-saat-lahir-menurut-provinsi-2010-2017.html
Buonomo, B. & Marca, R. D., 2018. Optimal bed net use for a dengue disease model with mosquito seasonal pattern. Math Methods Appl Sci., Volume 41, p. 573–592.
CDC, 2020. What is malaria?. [Online]
Available at: https://www.cdc.gov/malaria/about/faqs.html
[Accessed 6 Januari 2021].
Chen, Y., Liu, F., Yu, Q. & Li, T., 2021. Review of fractional epidemic models. Applied Mathematical Modelling, Volume 97, pp. 281-307.
COVID-19, S., 2021. Peta Sebaran COVID-19. [Online]
Available at: https://covid19.go.id/peta-sebaran-covid19
[Accessed 26 9 2021].
Das, P., Nadim, S. S., Das, S. & Das, P., 2021. Dynamics of COVID-19 transmission with comorbidity: a data driven modelling based approach. Nonlinear Dynamics.
Fatmawati and Tasman, H., 2013. A Malaria Model with Controls on Mass Treatment and Insecticide. Applied Mathematical Sciences, 7(68), pp. 3379 - 3391.
Fatmawati and Tasman, H., 2015. An optimal control strategy to reduce the spread of malaria resistance. Mathematical Biosciences, Volume 262, p. 73–79.
Fatmawati, 2010. Reduksi Model dan Strategi Perancangan Pengontrol Berorde Rendah untuk Sistem Berdimensi Tak Hingga, Bandung: Institut Teknologi Bandung.
Fatmawati & Ahmadin, 2018. Mathematical modelling of tuberculosis in a logistically growing human population with optimal control. World Journal of Modelling and Simulation, 14(2), pp. 90-99.
Fatmawati, Purwati, U. D. & Nainggolan, J., 2020. Parameter estimation and sensitivity analysis of malaria model, Journal of Physics: Conference Series, 1490.
Fatmawati, Shaiful, E. M. & Utoyo, M. I., 2018. A Fractional Order Model for HIV Dynamics in A Two-Sex Population. International Journal of Mathematics and Mathematical Sciences, p. 6801475.
Fatmawati & Tasman, H., 2016. An optimal treatment control of TB-HIV co-infection. International Journal of Mathematics and Mathematical Sciences, p. 8261208.
Fatmawati & Tasman, H., 2017. Optimal control of HIV resistance and tuberculosis co-infection using treatment intervention. Asian Pacific Journal of Tropical Disease, 7(6), pp. 366-373.
Feng, Z., 2007. Final and Peak Epidemic Sizes for SEIR Models with Quarantine and Isolation. Mathematical Biosciences and Engineering, Volume 4, p. 675–686.
Fleming, W. H. & Rishel, R. W., 2012. Deterministic and Stochastic Optimal Control. 1 ed. New York: Springer Science & Business Media.
Gao, D. & Huang, N., 2018. Optimal Control Analysis of a Tuberculosis Model. Appl. Math. Model., Volume 58, p. 47–64.
Guan, W. et al., 2020. Comorbidity and Its Impact on 1590 Patients with COVID-19 in China : a Nationwide Analysis. European Respiratory Journal, Volume 55.
Hanafiah, M. J. & Amir, A., 2007. Etika Kedokteran dan Hukum Kesehatan. Jakarta: Buku Kedokteran EGC.
Hethcote, H. W., 2000. The Mathematics of Infectious Diseases. SIAM Review, 42(4), p. 599–653.
Indonesia, 2020. Pertanyaan dan Jawaban Terkait COVID-19 Kementerian Kesehatan. [Online]
Available at: https://www.kemkes.go.id/article/view/20030400008/FAQ-Coronavirus.html
[Accessed 10 Desember 2020].
Irwan, 2017. Epidemiologi Penyakit Menular. Yogyakarta: Absolute Media.
Jia, J. et al., 2020. Modeling the control of COVID-19: Impact of policy interventions and meteorological factors. Electronic Journal of Differential Equations, pp. 1-24.
Kemenkes-RI, 2018. InfoDATIN 2018 TB, Jakarta: Pusat Data dan Informasi Kementerian Kesehatan RI.
Kemenkes-RI, 2021. Wilayah-wilayah Endemis Malaria Tinggi di Indonesia, https://www.malaria.id/artikel/wilayah-wilayah-endemis-malaria-tinggi-di-indonesia, s.l.: diakses pada 25 Juli 2022..
Kemkes-RI, 2022. Surat Edaran Dirjen Pencegahan dan Pengendalian Penyakit Nomor: HK.02.02/II/252/2022. [Online]
Available at: https://covid19.go.id/artikel/2022/01/13/surat-edaran-dirjen-pencegahan-danpengendalian-penyakit-nomor-hk0202ii2522022
[Accessed 20 Januari 2023].
Koella, J. C. & Antia, R., 2003. Epidemiological models for the spread of anti-malarial resistance. Malaria Journal, 2(3).
Lemon, S. M. et al., 2007. Ethical and Legal Considerations in Mitigating Pandemic Disease: Workshp Summary. Washington, DC, National Academic Press.
Lenhart, S. & Workman, J. T., 2007. Optimal Control Applied to Biological Models. New York: Chapman and Hall/CRC.
Lenhart, S. & Workman, J. T., 2007. Optimal Control Applied to Biological Models. New York: Chapman and Hall/CRC.
Lewis, F. L., Vrabie, D. L. & Syrmos, V. L., 2012. Optimal Control. Canada: John Wiley & Sons, Inc.
Naidu, D. S., 2002. Optimal Control Systems. New York: CRC PRESS.
Naidu, D. S., Fernando, T. & Fister, K. R., 2011. Optimal control in diabetes. Optim. Control Appl. Math., Volume 32, pp. 181-184.
Nainggolan, J. & Fatmawati, 2021. Optimal Prevention Strategy of the Type SIR COVID-19 Spread Model in Indonesia. Commun. Math. Biol. Neurosci, Volume 46.
Neilan, R. M. & Lenhart, S., 2010. An introduction to optimal control with an application in disease modeling. DIMACS Series in Discrete Mathematics, Volume 75, pp. 67-81.
Okosun, K. & Makinde, O. D., 2011. Modelling the impact of drug resistance in malaria transmission and its optimal control analysis. Int. Journal of the physical Sciences, Volume 6, pp. 6479-6487.
Okosun, K., Ouifiki, R. & Marcus, N., 2011. Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity. Biosystem, Volume 106, pp. 136-145.
Okosun, K., Ouifki, R. & Marcus, N., 2009. Mathematical analysis of malaria disease transmission model with waning immunity and optimal control applications. Stockholm City, Sweden, s.n.
Omame, A. et al., 2021. COVID-19 and dengue co-infection in Brazil: optimal control and cost-effectiveness analysis.. European Physical Journal Plus, Volume 136, pp. 1-33.
P2P-Kemkes, 2021. Program Vaksinasi COVID-19 Mulai Dilakukan, Presiden Orang Pertama Penerima Suntikan Vaksin COVID-19. [Online]
Available at: http://p2p.kemkes.go.id/program-vaksinasi-covid-19-mulai-dilakukan-presiden-orang-pertama-penerima-suntikan-vaksin-covid-19/
[Accessed 16 Juni 2021].
Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V. & Mishchenko, E. F., 1962. The mathematical theory of optimal processes. London, UK: John Wiley & Sons.
PPID, 2020. Penjelasan tentang karantina dan karantina yang dapat dilakukan di rumah. [Online]
Available at: https://dppkbpmd.bantulkab.go.id/ppid/penjelasantentang-karantina-dan-karantina-yang-dapat-dilakukan-di-rumah/
[Accessed 26 11 2020].
Prathumwan, D., Trachoo, K. & Chaiya, I., 2020. Mathematical Modeling for Prediction Dynamics of the Coronavirus Disease 2019 (COVID-19) Pandemic, Quarantine Control Measures. Symmetry, 12(1404).
Rahmayani, S. A., Aldila, D. & Handari, B. D., 2021. Cost-effectiveness analysis on measles transmission with vaccination and treatment intervention. AIMS Mathematics, Volume 6, p. 12491–12527.
Samsuzzoha, M., Singh, M. & Lucy, D., 2013. Parameter estimation of influenza epidemic model. Appl. Math. Comput., Volume 220, p. 616–629.
Satgas, 2021. Peta Sebaran COVID-19. [Online]
Available at: https://covid19.go.id/peta-sebaran-covid19
[Accessed 26 September 2021].
Tahir, M., Ali Shah, S. I., Zaman, G. & Khan, T., 2019. Stability behaviour of mathematical model MERS corona virus spread in population. Filomat, Volume 33, p. 3947–3960.
Tasman, F. a. H., 2015. Mathematical Biosciences, Volume 262, p. 73–79.
Tasman, F. a. H., 2015. An optimal control strategy to reduce the spread of malaria resistance. Mathematical Biosciences, Volume 262, pp. 73-79.
Tasman, H., 2010. Model Matematika Penyebaran Resistansi Plasmodium spp. Terhadap Obat Anti-malaria, Bandung: Institut Teknologi Bandung.
Tasman, H. et al., 2009. A model for transmission of partial resistence to anti-malarial drugs. Math. Biosci. Eng., Volume 6, pp. 649-661.
Van den Driessche, P. & Watmough, J., 2002. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci., Volume 180, p. 29–48.
WHO, 2020. Novel Coronavirus. [Online]
Available at: https://www.who.int/indonesia/news/novel-coronavirus/qa-for-public
[Accessed 8 Juli 2020].
WHO, 2020. Pertimbangan-pertimbangan untuk karantina individu dalam konteks penanggulangan penyakit coronavirus (COVID-19). [Online]
[Accessed 15 Desember 2020].
WHO, 2021. Malaria: The Highest Cause of Death in the World. [Online]
Available at: https://www.malaria.id/en/profile
[Accessed 25 Juli 2022].
WHO, 2022. Malaria. [Online]
Available at: https://www.who.int/news-room/fact-sheets/detail/malaria
[Accessed 25 Juli 2022].
WHO, 2023. Malaria. [Online]
Available at: https://www.who.int/news-room/fact-sheets/detail/malaria
[Accessed 3 Februari 2024].
WHO, 2023. Malaria. [Online]
Available at: https://www.who.int/news-room/fact-sheets/detail/malaria
[Accessed 3 Februari 2024].
WHO, 2024. Tuberculosis. [Online]
Available at: https://www.who.int/news-room/fact-sheets/detail/tuberculosis
[Accessed 5 Februari 2025].
World-Bank, 2018. Population of Indonesia 2017. [Online]
Available at: http://datatopics.worldbank.org/world-development-indicators/
[Accessed 25 September 2019].
Wu, Y. C., Chen, C. S. & Chan, Y. J., 2020. The outbreak of COVID-19: An overview. Journal of the Chinese Medical Association, Volume 83, pp. 217-220.
Wu, Z. & McGoogan, J. M., 2020. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA-Journal of the American Medical Association, Volume 323, p. 1239–1242.
Yang, J. et al., 2020. International Journal of Infectious Diseases Prevalence of Comorbidities and Its Effects in Patients Infected with SARS-CoV-2 : a Systematic Review and Meta-Analysis. International Journal of Infectious Diseases journal, Volume 94, pp. 91-95.

BISAC
- MAT026000 Mathematics / Reference
Published
Series
Categories
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.