PROBIOTIK DAN ACIDIFIERS UNTUK UNGGAS
Keywords:
zero hunger, ketahanan pangan, genetik, probiotik, acidifiers, ternak unggasSynopsis
Ayam pedaging atau ayam broiler, memiliki pertumbuhan yang cepat sehingga bisa dipanen dalam waktu empat hingga lima minggu, tergantung kebutuhan atau permintaan pasar. Kelebihan dari ayam pedaging yang dapat dipelihara dalam waktu relatif singkat tersebut dipengaruhi oleh faktor genetik, lingkungan pemeliharaan, pemenuhan kebutuhan nutrisi, baik secara kuantitas maupun kualitas, suhu lingkungan yang tepat, serta manajemen pemeliharaan yang tepat dan efisien. Daging ayam yang dihasilkan merupakan salah satu sumber protein hewani yang terjangkau oleh semua lapisan masyarakat (Umam et al., 2015). Dalam usaha peternakan ayam pedaging, biaya produksi terbesar terkait dengan pemenuhan penyediaan pakan ternak, sehingga dibutuhkan inovasi untuk menghindari terjadinya peningkatan biaya pakan. Salah satu cara atau inovasi yang dapat digunakan antara lain adalah dengan menggunakan feed additive. Feed additive adalah bahan tambahan yang diberikan dalam jumlah sedikit ke dalam pakan untuk meningkatkan nilai nutrisi tersebut untuk memenuhi kebutuhan khusus ayam.
Salah satu feed additive yang sering digunakan untuk membantu peningkatan pertumbuhan ternak adalah dengan penggunaan antibiotika, namun seiring berjalannya waktu, penggunaan antibiotika sebagai salah satu feed additive yang membantu meningkatkan pertumbuhan telah dilarang penggunaannya di banyak negara. Oleh karena itu, para peternak beralih ke penggunaan probiotik sebagai alternatif pengganti Antibiotic Growth Promoters (AGP). Probiotik diketahui memiliki berbagai manfaat, antara lain dapat meningkatkan pertumbuhan dan efisiensi pakan (Lokapirnasari et al., 2019; Lokapirnasari et al., 2022a; Lokapirnasari et al., 2023), meningkatkan kualitas dan produksi telur (Lokapirnasari et al., 2020a), meningkatkan performa ternak dan kualitas daging ayam (Yulianto et al., 2020a), dapat berperan sebagai immunomodulator (Yulianto et al., 2021) serta dapat meningkatkan kualitas bahan pakan (Lokapirnasari et al., 2022b). Penggunaan probiotik menjadi optimal apabila pH saluran pencernaan ayam sesuai dengan pH untuk pertumbuhan bakteri asam laktat (BAL). Apabila pertumbuhan BAL optimal, maka dapat menekan pertumbuhan bakteri patogen sehingga terjadi penurunan jumlah bakteri patogen dalam usus. Penurunan jumlah bakteri patogen menyebabkan villi-villi usus berkembang secara optimal sehingga membantu proses penyerapan nutrien menjadi lebih baik. Bakteri asam laktat dapat memproduksi antibakteri antara lain bakteriosin, sehingga membuat mikroba patogen tertekan pertumbuhannya.
Penurunan jumlah mikroba patogen juga terjadi pada feses, feses tidak terdeaminasi sehingga konsentrasi NH3 menjadi rendah. Amonia atau gas NH3 dapat mencemari lingkungan, menurunkan performa ternak, serta menurunkan imunitas sehingga ternak menjadi rentan terhadap penyakit. Kadar air dalam feses juga akan menurun bila jumlah bakteri patogen rendah. Kadar air dalam feses yang tinggi dapat mempengaruhi sanitasi dalam lingkungan kandang, serta dapat memicu segala jenis penyakit yang dapat menyerang ternak. Kadar air dalam feses perlu diturunkan agar ternak menjadi lebih sehat, tidak menghambat pertumbuhan serta tidak menurunkan produksi ternak. Kadar air feses sangat berpengaruh dengan tingkat pertumbuhan ayam, oleh karena itu kadar air feses perlu diturunkan. Penurunan kadar air dan kadar N-NH3 feses dapat diturunkan dengan cara menekan bakteri patogen dalam saluran pencernaan. Penurunan bakteri patogen dapat dilakukan dengan penggunaan bakteri asam laktat (BAL). Bakteri asam laktat dalam probiotik akan tumbuh optimal jika pH dalam saluran pencernaan sesuai dengan pH untuk BAL.
Selain pemberian probiotik pada pakan dapat juga ditambahkan acidifier yang berguna memperbaiki saluran pencernaan pada ternak agar lebih sehat. Penambahan acidifier bertujuan agar proses pencernaan dalam tubuh ternak akan meningkat dengan cara peningkatan kinerja enzim pencernaan. Penggunaan asam-asam organik diketahui dapat meningkatkan jumlah bakteri asam laktat pada ileum dan cecum pada ayam pedaging. Sejumlah asam organik yang diketahui dapat meningkatkan kesehatan, antara lain asam fumarat (fumaric acid), asam format (formic acid), asam laktat (lactic acid), dan asam sitrat (citric acid), serta garamnya. Selain efek higiene, asam organik turut berperan dalam membantu proses pencernaan pakan, eubiosis pada flora usus, efek kesehatan, dan peningkatan performa dan produktivitas ternak. Pertumbuhan bakteri asam laktat dapat dioptimalkan dengan penambahan acidifier dalam ransum. Acidifier diformulasikan dari asam-asam organik yang bermanfaat dalam preservasi serta proteksi pakan terhadap mikroflora patogen serta jamur. Acidifier dapat langsung berdampak pada ternak terutama perbaikan pada feed digestibility.
Downloads
References
Abd El-Hakim, A. S., G. Cherian and M. N. Ali., 2009. Use of organic acids, herbs and their combination to improve the utilization of commercial low protein broiler diets. International Journal of Poultry Science. 8(1),pp.14-20.
Abdel-Fattah, S. A., M. H. El-Sanhoury, N. M. El-Mednay and F.Abdel-Azeem. 2008. Thyroid activity, some blood constituents, organs morphology and performance of broiler chicks fed supplemental organic acids. International Journal of Poultry Science. 7(3), pp.215-222.
Abedi, E. and Hashemi, S.M.B., 2020. Lactic acid production–producing microorganisms and substrates sources-state of art. Heliyon, 6(10),pp 1-32.
Abid, Y., Casillo, A., Gharsallah, H., Joulak, I., Lanzetta, R., Corsaro, M.M., Attia, H. and Azabou, S., 2018. Production and structural characterization of exopolysaccharides from newly isolated probiotic lactic acid bacteria. International Journal of Biological Macromolecules, 108, pp.719-728.
Agustono, B., Apriliawati, R., Warsito, S.H., Yunita, M.N., Lokapirnasari, W.P., Hidanah, S., Sabdoningrum, E.K., Al-Arif, M.A., Lamid, M., Yuliani, G.A. and Chhetri, S., 2023. The effect supplementation of microbiota inoculant in the early laying hens feed on High Density Lipoprotein (HDL) and Low-Density Lipoprotein (LDL) in egg yolk. Pharmacognosy Journal, 15(3).
Agustono, B., Lokapirnasari, W.P., Yunita, M.N., Kinanti, R.N., Cesa, A.E. and Windria, S., 2022. Efficacy of dietary supplementary probiotics as substitutes for antibiotic growth promoters during the starter period on growth performances, carcass traits, and immune organs of male layer chicken. Veterinary World, 15(2), p.324.
Alakomi, H.L., Skytta, E., Saarela, M., Mattila-Sandholm, T., Latva-Kala, K. and Helander, I.M., 2000. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Applied and Environmental Microbiology, 66(5), pp.2001-2005.
Ali, Q., Ma, S., La, S., Guo, Z., Liu, B., Gao, Z., Farooq, U., Wang, Z., Zhu, X., Cui, Y. and Li, D., 2022. Microbial short-chain fatty acids: a bridge between dietary fibers and poultry gut health—A review. Animal Bioscience, 35(10), p.1461.
Aliverdi‐Nasab, K., Zhandi, M., Yousefi, A.R., Zahedi, V. and Rafieian‐Naeini, H.R., 2023. The effect of acidifier supplementation on egg production performance and intestinal histology of Japanese quail (Coturnix japonica). Veterinary Medicine and Science, 9(1), pp.263-271.
Amro, H. 2022. Gut health and dysbiosis. Poultry World. https://www.poultryworld.net/specials/gut-health-and-dysbiosis/ akses 11 Agustus 2023.
Andremont, A. 2000.Consequences of antibiotic therapy to the intestinal ecosystem. In Annales francaises d'anesthesie et de reanimation, 19(5), pp. 395-402.
Andriani, A.D., Lokapirnasari, W.P., Karimah, B., Hidanah, S. and Al-Arif, M.A., 2020. Potency of probiotic on broiler growth performance and economics analysis. Indian Journal of Animal Sciences, 90(8), pp.1140-1145.
Anh Thu, N.P., Hong Thuy, D.T., Nghia, N.H. and Phuong Thao, D.T., 2019. Heterologous expression of pediocin PA-1 in Escherichia coli. bioRxiv, p.607630.
Ao, T., A. H. Cantor, A. J. Pescatore, M. J. Ford, J. L. Pierce and K. A. Dawson. 2009. Effect of enzyme supplementation and acidification of diets on nutrient digestibility and growth performance of broiler chicks. Poultry Science. 88, pp. 111-117.
Apajalahti, J. and Kettunen, A., 2006. Microbes of the chicken gastrointestinal tract. Avian gut function in health and disease, 28, pp.124-137.
Arslan, C., dan Saatci, M. 2004. Effects of probiotic administration either as feed additive or by drinking water on performance and blood parameters of Japanese Quail. Archiv fur Geflugelkunde 68(4):160-163.
Asami, K., Kondo, A., Suda, Y., Shimoyamada, M. and Kanauchi, M., 2017. Neutralization of lipopolysaccharide by heat shock protein in P. pentosaceus AK‐23. Journal of Food Science, 82(7), pp.1657-1663.
Bangar, S.P., Suri, S., Trif, M. and Ozogul, F., 2022. Organic acids production from lactic acid bacteria: A preservation approach. Food Bioscience, 46, p.101615.
Barros, R.R., Maria Da Glória, S.C., Peralta, J.M., Facklam, R.R. and Teixeira, L.M., 2001. Phenotypic and genotypic characterization of Pediococcus strains isolated from human clinical sources. Journal of Clinical Microbiology, 39(4), pp.1241-1246.
Bartkiene, E., Lele, V., Ruzauskas, M., Domig, K.J., Starkute, V., Zavistanaviciute, P., Bartkevics, V., Pugajeva, I., Klupsaite, D., Juodeikiene, G. and Mickiene, R., 2020. Lactic acid bacteria isolation from spontaneous sourdough and their characterization including antimicrobial and antifungal properties evaluation. Microorganisms, 8(1), p.64.
Beckmann, L., Simon, O. and Vahjen, W., 2006. Isolation and identification of mixed linked β‐glucan degrading bacteria in the intestine of broiler chickens and partial characterization of respective 1, 3‐1, 4‐β‐glucanase activities. Journal of Basic Microbiology, 46(3), pp.175-185.
Ben Lagha, A., Haas, B., Gottschalk, M. and Grenier, D., 2017. Antimicrobial potential of bacteriocins in poultry and swine production. Veterinary Research, 48, pp.1-12.
Bermudez-Brito, M., Plaza-Díaz, J., Muñoz-Quezada, S., Gómez-Llorente, C. and Gil, A., 2012. Probiotic mechanisms of action. Annals of Nutrition and Metabolism, 61(2), pp.160-174.
Bianchi, M.M., Brambilla, L., Protani, F., Liu, C.L., Lievense, J. and Porro, D., 2001. Efficient homolactic fermentation by Kluyveromyces lactis strains defective in pyruvate utilization and transformed with the heterologous LDH gene. Applied and Environmental Microbiology, 67(12), pp.5621-5625.
Bijanti,R., R. S. Wahjuni, dan M. G. A. Yuliani. 2015. Pengaruh pemberian probiotik terhadap performa ayam petelur. Jurnal Penelitian Pertanian Terapan. 15 (3): 214-219.
Bintsis, T., 2018. Lactic acid bacteria as starter cultures: An update in their metabolism and genetics. AIMS microbiology, 4(4), p.665.
Blottière, H.M., Buecher, B., Galmiche, J.P. and Cherbut, C., 2003. Molecular analysis of the effect of short-chain fatty acids on intestinal cell proliferation. Proceedings of the Nutrition Society, 62(1), pp.101-106.
Bocci, V., 1992. The neglected organ: bacterial flora has a crucial immunostimulatory role. Perspectives in Biology and Medicine, 35(2), pp.251-260.
Broom, L.J. and Kogut, M.H., 2018. The role of the gut microbiome in shaping the immune system of chickens. Veterinary Immunology and Immunopathology, 204, pp.44-51.
Bulgasem, B.Y., Lani, M.N., Hassan, Z., Yusoff, W.M.W. and Fnaish, S.G., 2016. Antifungal activity of lactic acid bacteria strains isolated from natural honey against pathogenic Candida species. Mycobiology, 44(4), pp.302-309.
Burgat, V. 1991. Residues of Drugs of Veterinary Use in Food. La Revue du praticien, vol. 41, no, 11, pp. 985-990.
Cani, P.D. and Knauf, C., 2016. How gut microbes talk to organs: the role of endocrine and nervous routes. Molecular metabolism, 5(9), pp.743-752.
Cao, C., Chowdhury, V.S., Cline, M.A. and Gilbert, E.R., 2021. The microbiota-gut-brain axis during heat stress in chickens: a review. Frontiers in physiology, 12, p.752265.
Cebra, J.J., 1999. Influences of microbiota on intestinal immune system development. The American journal of clinical nutrition, 69(5), pp.1046s-1051s.
Chandra, E.H., Lokapirnasari, W.P., Hidanah, S., Al-Arif, M.A., Yuniarti, W.M. and Luqman, E.M., 2022. Potensi probiotik bakteri asam laktat terhadap efisiensi pakan, berat dan persentase karkas itik pedaging. Jurnal Medik Veteriner, 5(1), pp.69-73.
Chichlowski, M., Croom, WJ., Edens, FW., McBride, BW., Qiu, R., Chiang, CC., Daniel, LR., Havenstein, GB., dan Koci, MD. 2007. Microarchitecture and spatial relationship between bacteria and ileal, cecal, and colonic epithelium in chicks fed a direct-fed microbial, primalac, and salinomycin. Poultry science, vol. 86, no. 6, pp. 1121-1132.
Clarke, G., Stilling, R.M., Kennedy, P.J., Stanton, C., Cryan, J.F. and Dinan, T.G., 2014. Minireview: gut microbiota: the neglected endocrine organ. Molecular endocrinology, 28(8), pp.1221-1238.
Cremonini, F., Di Caro, S., Nista, E.C., Bartolozzi, F., Capelli, G., Gasbarrini, G. and Gasbarrini, A., 2002. Meta‐analysis: the effect of probiotic administration on antibiotic‐associated diarrhoea. Alimentary pharmacology & therapeutics, 16(8), pp.1461-1467.
Cummings, J.H., Antoine, J.M., Azpiroz, F., Bourdet-Sicard, R., Brandtzaeg, P., Calder, P.C., Gibson, G.R., Guarner, F., Isolauri, E., Pannemans, D. and Shortt, C., 2004. PASSCLAIM 1—gut health and immunity. European Journal of Nutrition, 43(2), pp.ii118-ii173.
Danielsen, M., Simpson, P.J., O'connor, E.B., Ross, R.P. and Stanton, C., 2007. Susceptibility of Pediococcus spp. to antimicrobial agents. Journal of Applied Microbiology, 102(2), pp.384-389.
Danzeisen JL, Kim HB, Isaacson RE, Tu ZJ and Johnson TJ.,2011. Modulations of the chicken cecal microbiome and metagenome in response to anticoccidal and growth promoter treatment. PLoS One 6: e27949.
de Azevedo, P.O., Mendonça, C.M., Seibert, L.,
Domínguez, J.M., Converti, A., Gierus, M. and Oliveira, R.P., 2020. Bacteriocin-like inhibitory substance of P. pentosaceus as a biopreservative for Listeria sp. control in ready-to-eat pork ham. Brazilian Journal of Microbiology, 51(3), pp.949-956.
de Azevedo, P.O.D.S., Converti, A., Domínguez, J.M. and de Souza Oliveira, R.P., 2017. Stimulating effects of sucrose and inulin on growth, lactate, and bacteriocin productions by P.pentosaceus. Probiotics and Antimicrobial Proteins, 9(4), pp.466-472.
de Azevedo, P.O.D.S., de Azevedo, H.F., Figueroa, E., Converti, A., Domínguez, J.M. and de Souza Oliveira, R.P., 2019a. Effects of pH and sugar supplements on bacteriocin-like inhibitory substance production by P. pentosaceus. Molecular Biology Reports, 46(5), pp.4883-4891.
de Azevedo, P.O.D.S., Converti, A., Gierus, M. and de Souza Oliveira, R.P., 2019b. Antimicrobial activity of bacteriocin-like inhibitory substance produced by P. pentosaceus: from shake flasks to bioreactor. Molecular Biology Reports, 46(1), pp.461-469.
Denbow, D.M., 2015. Gastrointestinal anatomy and physiology. Sturkie’s Avian Physiology (ed 6), Academic Press, New York, pp.337--366
Denli, M., F. Okan and K. Celik., 2003. Effect of dietary probiotic, organic acid and antibiotic supplementation to diets on broiler performance and carcass yield. Pakistan Journal of Nutrition. 2:89-91.
Dittoe, D.K., Ricke, S.C. and Kiess, A.S., 2018. Organic acids and potential for modifying the avian gastrointestinal tract and reducing pathogens and disease. Frontiers in Veterinary Science, 5, p.216.
Dobrowolski, P., Tomaszewska, E., Klebaniuk, R., Tomczyk-Warunek, A., Szymańczyk, S., Donaldson, J., Świetlicka, I., Mielnik-Błaszczak, M., Kuc, D. and Muszyński, S., 2019. Structural changes in the small intestine of female turkeys receiving a probiotic preparation are dose and region dependent. animal, 13(12), pp.2773-2781.
Dyce, K.M., Sack, W.O. and Wensing, C.J.G., 2009. Textbook of veterinary anatomy. pp 794-799. Elsevier Health Sciences.
Ebeid, T.A., Tůmová, E., Ketta, M. and Chodová, D., 2022. Recent advances in the role of feed restriction in poultry productivity: part II-carcass characteristics, meat quality, muscle fibre properties, and breast meat myopathies. World's Poultry Science Journal, 78(4), pp.989-1005.
Evans, J.M., Morris, L.S. and Marchesi, J.R., 2013. The gut microbiome: the role of a virtual organ in the endocrinology of the host. Journal of Endocrinology, 218(3), pp. R37-47.
FAO/WHO. 2001. Joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Amerian Córdoba Park Hotel, Córdoba, Argentina.
Febriyossa, A., Nurmiati., dan Periadnadi. 2013. Potensi dan karakterisasi bakteri alami pencernaan ayam broiler pedaging (Gallus gallus domesticus L.) sebagai kandidat probiotik pakan ayam broiler. Jurnal Biologi Universitas Andalas, 2(3), pp. 201-206
Feng, C., Jin, C., Liu, K. and Yang, Z., 2023. Microbiota-derived short chain fatty acids: Their role and mechanisms in viral infections. Biomedicine & Pharmacotherapy, 160, p.114414.
Feye, K.M., Baxter, M.F.A., Tellez-Isaias, G., Kogut, M.H. and Ricke, S.C., 2020. Influential factors on the composition of the conventionally raised broiler gastrointestinal microbiomes. Poultry Science, 99(2), pp.653-659.
Fioramonti, J., Theodorou, V. and Bueno, L., 2003. Probiotics: what are they? What are their effects on gut physiology? Best Practice & Research Clinical Gastroenterology, 17(5), pp.711-724.
Frandson, R.D., Wilke, W.L. and Fails, A.D., 2009. Anatomy and physiology of farm animals. pp 468-471. John Wiley & Sons.
Frank, K., 1994. Measures to preserve food and feeds from bacterial damage. UÈ bersichten zur TierernaÈhrung, 22, pp.149-63.
Fuller, R., 1989. Probiotic in man and animals: A rev. Journal of Applied Bacteriology, 90(3453), p.352.
Furness, J.B., Callaghan, B.P., Rivera, L.R. and Cho, H.J., 2014. The enteric nervous system and gastrointestinal innervation: integrated local and central control. In Microbial endocrinology: The microbiota-gut-brain axis in health and disease (pp. 39-71). Springer, New York, NY.
Fushimi, T., K. Tayama, M. Fukaya, K. Kitakoshi, N. Nakai, Y. Tsukamoto and Y. Sato. 2001. Acetic acid feeding enhances glycogen repletion in liver and skeletal muscle of rats. Journal of Nutrition. 131:1973-1977.
Gantois, I., Ducatelle, R., Pasmans, F., Haesebrouck, F., Hautefort, I., Thompson, A., Hinton, J.C. and Van Immerseel, F., 2006. Butyrate specifically down-regulates Salmonella pathogenicity island 1 gene expression. Applied and environmental microbiology, 72(1), pp.946-949.
Ganz, T., 2003. Defensins: antimicrobial peptides of innate immunity. Nature Reviews Immunology, 3(9), pp.710-720.
Garriga, M., Pascual, M., Monfort, J.M. and Hugas, M., 1998. Selection of lactobacilli for chicken probiotic adjuncts. Journal of Applied Microbiology, 84(1), pp.125-132.
Gauthier, R., 2002. Intestinal health, the key to productivity: The case of organic acids. IASA XXVII convencion ANECA-WPDC. Puerto Vallarta, Mexico, pp.1-14.
Ghadban, G.S., 2002. Probiotics in broiler production-a review. Archiv fur Geflugelkunde, 66(2), pp.49-58.
Ghosh, B., Sukumar, G. and Ghosh, A.R., 2019. Purification and characterization of pediocin from probiotic P. pentosaceus GS4, MTCC 12683. Folia Microbiologica, 64(6), pp.765-778.
Ghosh, D., 2011. Probiotics and intestinal defensins: augmenting the first line of defense in gastrointestinal immunity. Probiotic Foods In Health And Disease. Oxford& IBH Publishing Co, Delhi, pp.61-74.
Gilliland, S.E., 1989. Acidophilus Milk Products: A Review of potential benefits to consumers. Journal of Dairy Science, 72(10), pp.2483-2494.
Godoy-Santos, F., Pinto, M.S., Barbosa, A.A., Brito, M.A. and Mantovani, H.C., 2019. Efficacy of a ruminal bacteriocin against pure and mixed cultures of bovine mastitis pathogens. Indian journal of microbiology, 59, pp.304-312.
Gómez-García, M., Sol, C., de Nova, P.J., Puyalto, M., Mesas, L., Puente, H., Mencía-Ares, Ó., Miranda, R., Argüello, H., Rubio, P. and Carvajal, A., 2019. Antimicrobial activity of a selection of organic acids, their salts and essential oils against swine enteropathogenic bacteria. Porcine Health Management, 5(1), pp.1-8.
Gong, J., Forster, R.J., Yu, H., Chambers, J.R., Sabour, P.M., Wheatcroft, R. and Chen, S., 2002. Diversity and phylogenetic analysis of bacteria in the mucosa of chicken ceca and comparison with bacteria in the cecal lumen. FEMS microbiology letters, 208(1), pp.1-7.
Gong J, Si W, Forster RJ, Huang R, Hai Y, Yulong Y, Yang C and Han Y.2007. 16S rRNA gene-based analysis of mucosa associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from crops to ceca. FEMS Microbial Ecology 59: 147–157.
Gornowicz, E. and K. Dziadek. 2002. The effects of acidifying preparations added to compound feeds on management conditions of broiler chickens. Annals of Animal Science. (Suppl. 1):93-96.
Gou, H.Z., Zhang, Y.L., Ren, L.F., Li, Z.J. and Zhang, L., 2022. How do intestinal probiotics restore the intestinal barrier?. Frontiers in Microbiology, 13, p.929346.
Guarner, F. and Malagelada, J.R., 2003. Gut flora in health and disease. The Lancet, 361(9356), pp.512-519.
Gueimonde, M. and C. Reyes-Gavilan. 2009. Detection and enumeration of gastrointestinal microorganisms. In: Handbook of probiotics and prebiotics. John Wiley & Sons, New Jersey.
Gunal, M., G. Yayli, O. Kaya, N. Karahan and O. Sulak. 2006. The effects of antibiotic growth promoter, probiotic or organic acid supplementation on performance, intestinal microflora and tissue of broilers. International Journal of Poultry Science. 5(2):149-155.
Haakensen, M., Dobson, C.M., Hill, J.E. and Ziola, B., 2009. Reclassification of Pediococcus dextrinicus (Coster and White 1964) Back 1978 (Approved Lists 1980) as Lactobacillus dextrinicus comb. nov., and emended description of the genus Lactobacillus. International Journal of Systematic and Evolutionary Microbiology, 59(3), pp.615-621.
Harijani, S. and Hidanah, S., 2020. Potensi pemberian probiotik Bifidobacterium sp., Lactococcus lactis, dan Lactobacillus sp. terhadap performa produksi ayam petelur. Jurnal Medik Veteriner, 3(2), pp.160-165.
Harimurti, S. and Rahayu, E.S., 2009. Morfologi usus ayam broiler yang disuplementasi dengan probiotik strain tunggal dan campuran. Agritech, 29(3), pp.179-183.
Harimurti, S., E.S. Rahayu, Nasroedin dan Kurniasih. 2007. Bakteri asam laktat dari intestin ayam sebagai agensia probiotik. Animal Production. 9(2), pp.82-91.
Harish, K. and Varghese, T., 2006. Probiotics in humans–evidence based review. Calicut Medical Journal, 4(4), p.e3.
Hassan, H.M.A., Mohamed, M.A., Youssef, A.W. and Hassan, E.R., 2010. Effect of using organic acids to substitute antibiotic growth promoters on performance and intestinal microflora of broilers. Asian-Australasian Journal of Animal Sciences, 23(10), pp.1348-1353.
Hemaiswarya, S., Raja, R., Ravikumar, R. and Carvalho, I.S., 2013. Mechanism of action of probiotics. Brazilian archives of Biology and technology, 56(1), pp.113-119.
Hopkins, M.J., Sharp, R. and Macfarlane, G.T., 2001. Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut, 48(2), pp.198-205.
Huda, K., Lokapirnasari, W.P., Soeharsono, S., Hidanah, S., Harijani, N. and Kurnijasanti, R., 2019. Pengaruh pemberian probiotik Lactobacillus acidophilus dan Bifidobacterium terhadap produksi ayam petelur yang diinfeksi Escherichia coli. Jurnal Sain Peternakan Indonesia, 14(2), pp.154-160.
Huyghebaert, G., Ducatelle, R. and Van Immerseel, F., 2011. An update on alternatives to antimicrobial growth promoters for broilers. The Veterinary Journal, 187(2), pp.182-188.
Ibrahim, KA., Mahmoud, A., dan Abd Elhalim, HS. 2005. Comparison of the efficacies of commercial probiotics on growth performance, carcass characteristics and some plasma constituents of broiler chicks. Suez Canal Veterinary Medical Journal, vol. 7, pp. 1-18.
Ilavenil, S., Vijayakumar, M., Kim, D.H., Valan Arasu, M., Park, H.S., Ravikumar, S. and Choi, K.C., 2016. Assessment of probiotic, antifungal and cholesterol lowering properties of P. pentosaceus KCC‐23 isolated from Italian ryegrass. Journal of the Science of Food and Agriculture, 96(2), pp.593-601.
Islam, K. M. S., A. Schuhmacher, H. Aupperle and J. M. Gropp. 2008. Fumaric acid in broiler nutrition: a dose titration study and safety aspects. International Journal of Poultry Science. 7(9):903-907.
Islam, MW., Rahman, MM., Kabir, SML., Kamruzzaman, SM., dan Islam, MN. 2004. Effects of probiotics supplementation on growth performance and certain haemato-biochemical parameters in broiler chickens. Bangladesh Journal of Veterinary Medicine, 2(1), pp. 39-43.
Jacquie, J., Pescatore T. and Cantor A. 2011. Avian digestive system. University of Kentucky Cooperative Extension Issued 02-2011, pp 1-6.
Jahromi, M. F., Wesam Altaher, Y., Shokryazdan, P., Ebrahimi, R., Ebrahimi, M., Idrus, Z., Tufarelli, V. and Liang, J.B., 2016. Dietary supplementation of a mixture of Lactobacillus strains enhances performance of broiler chickens raised under heat stress conditions. International Journal of Biometeorology, 60, pp.1099-1110.
Jarvis, E.D., Güntürkün, O., Bruce, L., Csillag, A., Karten, H., Kuenzel, W., Medina, L., Paxinos, G., Perkel, D.J., Shimizu, T. and Striedter, G., 2005. Avian brains and a new understanding of vertebrate brain evolution. Nature Reviews Neuroscience, 6(2), p.151.
Javadi, A., Mirzaei, H., Safarmashaei, S., dan Vahdatpour, S. 2012. Effects of probiotic (live and inactive Saccharomyces cerevisiae) on meat and intestinal microbial properties of Japanese quails. African Journal of Biotechnology, 11(57), pp. 12083-12087.
Jha, R. and Berrocoso, J.D., 2015. Dietary fiber utilization and its effects on physiological functions and gut health of swine. Animal, 9(9), pp.1441-1452.
Jiang, S., Cai, L., Lv, L. and Li, L., 2021. P. pentosaceus, a future additive or probiotic candidate. Microbial Cell Factories, 20(1), pp.1-14.
Jin, L. Z., Y. W. Ho, N. Abdullah, M. A. Ali and S. Jalaluddin. 1998. Effects of adherent Lactobacillus cultures on growth, weight of organs and intestinal microflora and volatile fatty acids in broilers. Animal Feed Science and Technology. 70:197-209
Jonganurakkun, B., Wang, Q., Xu, S.H., Tada, Y., Minamida, K., Yasokawa, D., Sugi, M., Hara, H. and Asano, K., 2008. P. pentosaceus NB-17 for probiotic use. Journal of Bioscience and Bioengineering, 106(1), pp.69-73.
Józefiak, D., Rutkowski, A., Fratczak, M. and Boros, D., 2004. The effect of dietary fibre fractions from different cereals and microbial enzymes supplementation on performance, ileal viscosity and short-chain fatty acids concentration in caeca of broiler chickens. Journal of Animal and Feed Sciences, 13(3), pp.487-496.
Jozefiak, D., Rutkowski, A., Kaczmarek, S., Jensen, B.B., Engberg, R.M. and Højberg, O., 2010. Effect of β-glucanase and xylanase supplementation of barley-and rye-based diets on caecal microbiota of broiler chickens. British Poultry Science, 51(4), pp.546-557.
Kabir, SL., Rahman, MM., Rahman, MB., Rahman, MM., dan Ahmed, SU. 2004. The dynamics of probiotics on growth performance and immune response in broilers. International Journal of Poultry Science, 3(5), pp. 361-364.
Karspinska, E., B. Blaszcak, G., Kosowska, A., Degrski, MB., dan W.B. Borzemska. 2001. Growth of the intestinal anaerobes in the newly hatched chicks according to the feeding and providing with normal gut flora. Bulletin of the Veterinary Institute in Puławy, 45, pp. 105-109.
Karwanti, N.W., Arumdani, D.F., Yulianto, A.B., Marbun, T.D., Sherasiya, A., Al Arif, M.A., Lamid, M. and Lokapirnasari, W.P., 2023. Efficacy of Moringa oleifera Lam. extracts and Pediococcus pentosaceus, Lactobacillus acidophilus, Lactobacillus plantarum probiotic during starter period on growth performance of male broiler chicken. F1000Research, 12(215), p.215.
Khan, S., Moore, R.J., Stanley, D. and Chousalkar, K.K., 2020. The gut microbiota of laying hens and its manipulation with prebiotics and probiotics to enhance gut health and food safety. Applied and Environmental Microbiology, 86(13), pp.e00600-20.
Khorshidian, N., Khanniri, E., Mohammadi, M., Mortazavian, A.M. and Yousefi, M., 2021. Antibacterial activity of pediocin and pediocin-producing bacteria against Listeria monocytogenes in meat products. Frontiers in Microbiology, 12, p.709959.
Kim, C.H., 2021. Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids. Cellular & molecular immunology, 18(5), pp.1161-1171.
Kim, J.W., Kim, J.H. and Kil, D.Y., 2015. Dietary organic acids for broiler chickens: a review. Revista Colombiana de Ciencias Pecuarias, 28(2), pp.109-123.
Kirchgessner, M. and Roth, F.X., 1988. Nutritive effects of organic acids in piglet rearing and pig fattening. Ubersichten zur Tierernahrung, 16, pp.93-108.
Kiyono, H., Mosteller-Barnum, L.M., Pitts, A.M., Williamson, S.I., Michalek, S.M. and McGhee, J.R., 1985. Isotype-specific immunoregulation. IgA-binding factors produced by Fc alpha receptor-positive T cell hybridomas regulate IgA responses. Journal of Experimental Medicine, 161(4), pp.731-747.
Kompiang, IP. 2002. Pengaruh Ragi: Saccharomyces Cerevisiae dan ragi laut sebagai pakan imbuhan probiotik terhadap kinerja unggas. JITV 7(1), pp. 18-21.
Korzenik, J.R. and Podolsky, D.K., 2006. Evolving knowledge and therapy of inflammatory bowel disease. Nature reviews Drug discovery, 5(3), p.197.
Krause, J.S., Meddle, S.L., Wingfield, J.C., Mitchell, G.W., Guglielmo, C.G., Hobson, K.A., Benowitz-Fredericks, Z.M., Schultner, J., Kitaysky, A.S., Lind, C.M. and Beaupre, S.J., 2015. Sturkie’s Avian Physiology.
Ladha, G. and Jeevaratnam, K., 2020. Characterization of purified antimicrobial peptide produced by P. pentosaceus LJR1, and its application in preservation of white leg shrimp. World Journal of Microbiology and Biotechnology, 36(5), pp.1-12.
Lebeer, S., Vanderleyden, J. and De Keersmaecker, S.C., 2008. Genes and molecules of lactobacilli supporting probiotic action. Microbiology and Molecular Biology Reviews, 72(4), pp.728-764.
Lele, V., Zelvyte, R., Monkeviciene, I., Kantautaite, J., Stankevicius, R., Ruzauskas, M., Sederevicius, A., Antanaitis, R. and Bartkiene, E., 2019. Milk production and ruminal parameters of dairy cows fed diets containing Lactobacillus sakei KTU05-6 and P. pentosaceus BaltBio02. Polish Journal of Veterinary Sciences, pp.327-335.
Li, L., Nasr-El-Din, H.A., Crews, J.B. and Cawiezel, K.E., 2010, February. Impact of organic acids/chelating agents on the rheological properties of an amidoamine oxide surfactant. In SPE International Symposium and Exhibition on Formation Damage Control. OnePetro.
Liao, X., Shao, Y., Sun, G., Yang, Y., Zhang, L., Guo, Y., Luo, X. and Lu, L., 2020. The relationship among gut microbiota, short-chain fatty acids, and intestinal morphology of growing and healthy broilers. Poultry science, 99(11), pp.5883-5895.
Liu, L., Li, Q., Yang, Y. and Guo, A., 2021. Biological function of short-chain fatty acids and its regulation on intestinal health of poultry. Frontiers in Veterinary Science, 8, p.736739.
Lokapirnasari, WP., dan Sabdoningrum, EK. 2000. Efek penggunaan bakteri asam laktat terhadap kecernaan protein kasar pada ayam pedaging jantan. Media Kedokteran Hewan, 16(3), pp 1-5.
Lokapirnasari, W.P., Nazar, D.S., Nurhajati, T., Supranianondo, K. and Yulianto, A.B., 2015. Production and assay of cellulolytic enzyme activity of Enterobacter cloacae WPL 214 isolated from bovine rumen fluid waste of Surabaya abbatoir, Indonesia. Veterinary World, 8(3), p.367.
Lokapirnasari, WP., Sahidu, AM., Nurhajati, T., Soepranianondo, K., dan Yulianto, AB. 2016a. Lactococcus lactis Lactic acid bacteria from intestine beef cattle as a candidate probiotics. Proceding International Seminar on Molecular Biology in Veterinary Medicine. ISBN 978-602-7043-81-7.
Lokapirnasari, WP., Rahmawati, A., dan Eliyani, H. 2016b. Potensi penambahan bakteri asam laktat Lactobacillus casei dan Lactobacillus rhamnosus terhadap konsumsi pakan dan konversi pakan ayam pedaging. Agroveteriner, 5(1), pp. 43-49.
Lokapirnasari, W.P., Pribadi, T.B., Al Arif, A., Soeharsono, S., Hidanah, S., Harijani, N., Najwan, R., Huda, K., Wardhani, H.C.P., Rahman, N.F.N. and Yulianto, A.B., 2019. Potency of probiotics Bifidobacterium spp. and Lactobacillus casei to improve growth performance and business analysis in organic laying hens. Veterinary World, 12(6), p.860.
Lokapirnasari, W.P., Al Arif, M.A. and Yulianto, A.B., 2020. Performance of Layers Fed with Lactococcus lactis, Bifidobacterium sp, Lactobacillus casei. Indian Veterinary Journal, 97(1), pp.42-44.
Lokapirnasari, W.P., Sahidu, A.M., Maslachah, L., Yulianto, A.B. and Najwan, R., 2020a, February. The effect of combination Bifidobacterium sp and Lactobacillus acidophilus probiotic on egg yolk cholesterol, HDL, and LDL. In IOP Conference Series: Earth and Environmental Science, 441(1), p. 012049. IOP Publishing.
Lokapirnasari, W.P., Sahidu, A.M., Maslachah, L., Sabdoningrum, E.K. and Yulianto, A.B., 2020b. Effect of Lactobacillus casei and Lactobacillus acidophilus in laying hens challenged by Escherichia coli infection. Sains Malaysiana, 49(6), pp.1237-1244.
Lokapirnasari, W.P., Maslachah, L., Sahidu, A.M. and Yulianto, A.B., 2021, March. The potency of Pediococcus pentosaceus incubated with Moringa oleifera in fermentation process to increase nutrient content of rice bran. In IOP Conference Series: Earth and Environmental Science (Vol. 718, No. 1, p. 012036). IOP Publishing.
Lokapirnasari, W.P., Al Arif, M.A., Maslachah, L., Chandra, E.H., Utomo, G.S.M. and Yulianto, A.B., 2022a. Pengaruh Kombinasi Probiotik dan Moringa oleifera Leaf Extract Terhadap Konsumsi Nutrien pada Itik Pedaging. Jurnal Medik Veteriner, 5(2), pp.241-246.
Lokapirnasari, W.P., Maslachah, L., Sahidu, A.M., Yulianto, A.B., Pramestya, N.R. and Lestari, R.D., 2022b. The potency of Lactobacillus fermentum and Moringa oleifera Extract with different fermentation time to improve the nutrient content of fermented rice bran. Research Journal of Pharmacy and Technology, 15(8), pp.3736-3742.
Lokapirnasari, W.P., Al Arif, M.A., Maslachah, L., Kirana, A.L.P., Suryandari, A., Yulianto, A.B. and Sherasiya, A., 2023. The potency of Lactobacillus acidophillus and L. lactis probiotics and Guazuma ulmifolia Lam. extract as feed additives with different application times to improve nutrient intake and feed efficiency in Coturnix coturnix japonica females. Journal of Animal and Feed Sciences, 32(1), pp.59-67.
Lorenzoni, G. ed., 2010. Poultry diseases influenced by gastrointestinal health: traditional treatments and innovative solutions. Nottingham University Press.
Lovela, A.R., Lokapirnasari, W.P., Warsito, S.H., Prasinta, R., Hapsari, T. and Andriani, A., 2023. The quality of Japanese quail eggs after administration of Bifidobacterium sp. and Guazuma ulmifolia leaf extract. Jurnal Medik Veteriner, 6(1), pp.132-136.
Lu, J., U. Idris, B. Harmon, C. Hofacre, J. Maurer, and M.D. Lee. 2003. Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Applied and Environmental Microbiology. 69(11), pp. 6816-6824.
Mackie, B. 2011. Lessons from Europe on reducing antibiotic use in livestock. British Columbia Medical Journal , 53, p. 487.
Magnusson, J., Ström, K., Roos, S., Sjögren, J. and Schnürer, J., 2003. Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS microbiology letters, 219(1), pp.129-135.
Maki, J.J., Klima, C.L., Sylte, M.J. and Looft, T., 2019. The microbial pecking order: Utilization of intestinal microbiota for poultry health. Microorganisms, 7(10), p.376.
Mani-López, E., García, H.S. and López-Malo, A., 2012. Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Research International, 45(2), pp.713-721.
Mantelli, F. and Argüeso, P., 2008. Functions of ocular surface mucins in health and disease. Current opinion in allergy and clinical immunology, 8(5), p.477.
Mantzios, T., Tsiouris, V., Papadopoulos, G.A., Economou, V., Petridou, E., Brellou, G.D., Giannenas, I., Biliaderis, C.G., Kiskinis, K. and Fortomaris, P., 2023. Investigation of the effect of three commercial water acidifiers on the performance, gut health, and Campylobacter jejuni colonization in experimentally challenged broiler chicks. Animals, 13(12), p.2037.
Margawani, KR. 1995. Lactobacillus casei Galur Shirota (Bakteri Yakult), peranannya dalam kesehatan manusia. Buletin Teknologi Industri Pangan, vol. VI, no. 2, pp. 93-94.
Martinez, F.A.C., Balciunas, E.M., Salgado, J.M., González, J.M.D., Converti, A. and de Souza Oliveira, R.P., 2013. Lactic acid properties, applications and production: A review. Trends in Food Science & Technology, 30(1), pp.70-83.
Mas’ad, K., Lokapirnasari, W.P., Arif, M.A.A., Soeharsono, S., Kurnijasanti, R. and Harijani, N., 2020. Potensi probiotik terhadap feed efficiency dan egg mass pada ayam petelur. Jurnal Medik Veteriner, 3(2), pp.203-207.
Masuda, T., Kimura, M., Okada, S. and Yasui, H., 2010. P. pentosaceus Sn26 inhibits IgE production and the occurrence of ovalbumin-induced allergic diarrhea in mice. Bioscience, biotechnology, and biochemistry, pp.0912261784-0912261784.
Mathur, H., Field, D., Rea, M.C., Cotter, P.D., Hill, C. and Ross, R.P., 2017. Bacteriocin-antimicrobial synergy: a medical and food perspective. Frontiers in Microbiology, 8, p.1205
Mazmanian, S.K., Liu, C.H., Tzianabos, A.O. and Kasper, D.L., 2005. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell, 122(1), pp.107-118.
Messer, J.S. and Chang, E.B., 2018. Microbial physiology of the digestive tract and its role in inflammatory bowel diseases. In Physiology of the gastrointestinal tract (pp. 795-810). Academic Press.
Miller, S.I., 2016. Antibiotic resistance and regulation of the gram-negative bacterial outer membrane barrier by host innate immune molecules. MBio, 7(5), pp.10-1128.
Moretó, M., Amat, C., Puchal, A., Buddington, R.K. and Planas, J.M., 1991. Transport of L-proline and alpha-methyl-D-glucoside by chicken proximal cecum during development. The American Journal of Physiology, 260(3 Pt 1), pp.G457-63.
Mosenthin, R., Sauer, W.C., Ahrens, F., De Lange, C.F.M. and Bornholdt, U., 1992. Effect of dietary supplements of propionic acid, siliceous earth or a combination of these on the energy, protein and amino acid digestibilities and concentrations of microbial metabolites in the digestive tract of growing pigs. Animal Feed Science and Technology, 37(3-4), pp.245-255.
Mountzouris, KC., Tsirtsikos, P., Kalamara, E., Nitsch, S., Schatzmayr, G., dan Fegeros, K. 2007. Evaluation of the efficacy of a probiotic containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus strains in promoting broiler performance and modulating cecal microflora composition and metabolic activities. Poultry Science, 86(2), pp. 309-317.
Naidu, A. S. 2000. Natural food antimicrobial systems. CRC Press USA. pp. 431-462.
Nair, M.S., Amalaradjou, M.A. and Venkitanarayanan, K., 2017. Antivirulence properties of probiotics in combating microbial pathogenesis. Advances in Applied Microbiology, 98, pp.1-29.
Najwan, R., Noorrahman, N.F., Cipka, H., Huda, K., Lamid, M. and Lokapirnasari, W.P., 2019. Potensi bakteri Lactococcus lactis dan Lactobacillus casei terhadap performa produksi ayam petelur yang diinfeksi Escherichia coli. Buana Sains, 19(1), pp.81-90.
Nanasombat, S., Treebavonkusol, P., Kittisrisopit, S., Jaichalad, T., Phunpruch, S., Kootmas, A. and Nualsri, I., 2017. Lactic acid bacteria isolated from raw and fermented pork products: Identification and characterization of catalase-producing P. pentosaceus. Food Science and Biotechnology, 26(1), pp.173-179.
Ndelekwute, E.K., Assam, E.D. and Assam, E.M., 2018. Apparent nutrient digestibility, gut pH and digesta viscosity of broiler chickens fed acidified water. MOJ Anatomy & Physiology, 5, pp.250-253.
Neish, A.S., 2014. Mucosal immunity and the microbiome. Annals of the American Thoracic Society, 11(Supplement 1), pp. S28-S32.
Nicholson, J.K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W. and Pettersson, S., 2012. Host-gut microbiota metabolic interactions. Science, 336(6086), pp.1262-1267.
Nisa, A.K., Lamid, M., Lokapirnasari, W.P. and Amin, M., 2021, February. Improving crude protein and crude fat content of Seligi leaf (Phyllanthus buxifolius) flour through probiotic fermentation. In IOP Conference Series: Earth and Environmental Science (Vol. 679, No. 1, p. 012041). IOP Publishing.
Noorrahman, N.F., Lokapirnasari, W.P., Soepranianondo, K., Hidanah, S. and Sarmanu, S., 2019. Efek penggunaan probiotik Lactobacillus casei dan Bifidobacterium sp terhadap angka konversi pakan dan konsumsi pakan pada ayam petelur yang diinfeksi Escherichia coli. Briliant: Jurnal Riset dan Konseptual, 4(2), pp.167-173.
Nuryana, I., Andriani, A., Lisdiyanti, P. and Yopi, 2019, April. Analysis of organic acids produced by lactic acid bacteria. In IOP Conference Series: Earth and Environmental Science (Vol. 251, p. 012054). IOP Publishing.
Obst, B.S. and Diamond, J., 1992. Ontogenesis of intestinal nutrient transport in domestic chickens (Gallus gallus) and its relation to growth. The Auk, 109(3), pp.451-464.
Ogunbanwo, S.T., Sanni, A.I. and Onilude, A.A., 2004. Influence of bacteriocin in the control of Escherichia coli infection of broiler chickens in Nigeria. World Journal of Microbiology and Biotechnology, 20, pp.51-56.
O'Hara, A.M. and Shanahan, F., 2006. The gut flora as a forgotten organ. EMBO reports, 7(7), pp.688-693.
Ohimain, E.I. and Ofongo, R.T., 2012. The effect of probiotic and prebiotic feed supplementation on chicken health and gut microflora: a review. International Journal of Animal and Veterinary Advances, 4(2), pp.135-143.
Ohland, C.L. and MacNaughton, W.K., 2010. Probiotic bacteria and intestinal epithelial barrier function. American journal of physiology-gastrointestinal and liver physiology, 298(6), pp.G807-G819.
Okey, S.N., 2023. Alternative feed additives to antibiotics in improving health and performance in poultry and for the prevention of antimicrobials: A Review. Nigerian Journal of Animal Science and Technology (NJAST), 6(1), pp.65-76.
Okulewicz A and Zlotorzycka J. 1985. Connections between Ascaridia galli and the bacterial flora in the intestine of hens. Angewandte Parasitology 26: 151–155.
Øverland, M., Bikker, P. and Fledderus, J., 2009. Potassium diformate in the diet of reproducing sows: Effect on performance of sows and litters. Livestock Science, 122(2-3), pp.241-247.
Owens, B., L. Tucker, M. A. Collins and K. J. McCracken. 2008. Effects of different feed additives alone or in combination on broiler performance, gut microflora and ileal histology. British Poultry Science. 49(2):202-212.
Özcelik, S., Kuley, E. and Özogul, F., 2016. Formation of lactic, acetic, succinic, propionic, formic and butyric acid by lactic acid bacteria. LWT—Food Science and Technology , 73, pp.536-542.
Panneman, H. 2000 . Clostridial enteritis/dysbacteriosis, fast diagnosis by T-RFLP, a novel diagnostic tool. In Proceedings of the Elanco Global Enteritis Symposium. Cork Ireland.
Papatsiros, V.G., Katsoulos, P.D., Koutoulis, K.C., Karatzia, M., Dedousi, A. and Christodoulopoulos, G., 2014. Alternatives to antibiotics for farm animals. CABI Reviews, (2013), pp.1-15.
Patterson, J.A. and Burkholder, K.M., 2003. Application of prebiotics and probiotics in poultry production. Poultry Science, 82(4), pp.627-631.
Pearlin, B.V., Muthuvel, S., Govidasamy, P., Villavan, M., Alagawany, M., Ragab Farag, M., Dhama, K. and Gopi, M., 2020. Role of acidifiers in livestock nutrition and health: A review. Journal of Animal Physiology and Animal Nutrition, 104(2), pp.558-569.
Pelicano, ERL., De Souza, PA., De Souza, HBA., Oba, A., Norkus, EA., Kodawara, LM., dan De Lima, TMA. 2003. Effect of different probiotics on broiler carcass and meat quality. Revista Brasileira de Ciência Avícola, vol. 5, no. 3, pp. 207-214.
Pereira, W.A., Mendonça, C.M.N., Urquiza, A.V., Marteinsson, V.Þ., LeBlanc, J.G., Cotter, P.D., Villalobos, E.F., Romero, J. and Oliveira, R.P., 2022. Use of probiotic bacteria and bacteriocins as an alternative to antibiotics in aquaculture. Microorganisms, 10(9), p.1705.
Pérez-Ramos, A., Madi-Moussa, D., Coucheney, F. and Drider, D., 2021. Current knowledge of the mode of action and immunity mechanisms of LAB-bacteriocins. Microorganisms, 9(10), p.2107.
Powley, T.L., Spaulding, R.A. and Haglof, S.A., 2011. Vagal afferent innervation of the proximal gastrointestinal tract mucosa: chemoreceptor and mechanoreceptor architecture. Journal of Comparative Neurology, 519(4), pp.644-660.
Prado, FC., Parada, JL., Pandey, A., dan Soccol, CR. 2008. Trends in Non-dairy Probiotic Beverages. Food Res. Int, vol. 41, pp. 111-123.
Pratama, H.S., Lokapirnasari, W.P., Soeharsono, M.A.A.A., Harijani, N. and Hidanah, S., 2021. Pengaruh probiotik Bacillus subtilis terhadap efisiensi pakan dan massa telur ayam petelur. Jurnal Medik Veteriner, 4(1), pp.37-41.
Proctor, N.S. and Lynch, P.J., 1993. Manual of ornithology: avian structure & function. Yale University Press.
Prudêncio, C.V., Dos Santos, M.T. and Vanetti, M.C.D., 2015. Strategies for the use of bacteriocins in Gram-negative bacteria: relevance in food microbiology. Journal of Food Science and Technology, 52, pp.5408-5417.
Qu A, Brulc JM, Wilson MK, Law BF, Theoret JR, Joens LA, Konkel ME, Angly F, Dinsdale EA, Edwards RA, Nelson KE and White BA. 2008. Comparative metagenomics reveals host-specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome. PLoS One 3: e2945.
Rahayu, E. 2011. Antibiotika, Resistansi, dan Rasionalitas Terapi. J. Antibiotika Resistansi, 4(1), pp. 191-198.
Rahayu, E., dan Purwandhani, S. 2007. Isolasi dan seleksi Lactobacillus yang berpotensi sebagai agensia probiotik. Agritech, 23(2), pp. 67-74.
Raheel, I., Mohammed, A.N. and Mohamed, A.A., 2023. The Efficacy of bacteriocins against biofilm-producing bacteria causing bovine clinical mastitis in dairy farms: A New Strategy. Current Microbiology, 80(7), pp.1-11.
Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. and Medzhitov, R., 2004. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell, 118(2), pp.229-241.
Rattanachaikunsopon, P. and Phumkhachorn, P., 2010. Lactic acid bacteria: their antimicrobial compounds and their uses in food production. Annals of biological research, 1(4), pp.218-228.
Ravindran, V., 2013. Feed enzymes: The science, practice, and metabolic realities. Journal of Applied Poultry Research, 22(3), pp.628-636.
Ray, B. 1996. Fundamental Food Microbiology. New York: CRC Press
Regunathan-Shenk, R., Shah, N.B. and Raj, D.S., 2022. The gut microbiome and the kidney. In Nutritional Management of Renal Disease (pp. 147-161). Academic Press.
Rehman, H.U., Vahjen, W., Awad, W.A. and Zentek, J., 2007. Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens. Archives of animal nutrition, 61(5), pp.319-335.
Ricke, S.C., 2003. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry science, 82(4), pp.632-639.
Riesenfeld, G., Sklan, D., Bar, A., Eisner, U. and Hurwitz, S., 1980. Glucose absorption and starch digestion in the intestine of the chicken. The Journal of Nutrition, 110(1), pp.117-121.
Ringseis, R. and Eder, K., 2022. Heat stress in pigs and broilers: role of gut dysbiosis in the impairment of the gut-liver axis and restoration of these effects by probiotics, prebiotics and synbiotics. Journal of Animal Science and Biotechnology, 13(1), pp.1-16.
Ríos-Covián, D., Ruas-Madiedo, P., Margolles, A., Gueimonde, M., De Los Reyes-gavilán, C.G. and Salazar, N., 2016. Intestinal short chain fatty acids and their link with diet and human health. Frontiers in microbiology, 7, p.185.
Rose, E.C., Odle, J., Blikslager, A.T. and Ziegler, A.L., 2021. Probiotics, prebiotics and epithelial tight junctions: a promising approach to modulate intestinal barrier function. International Journal of Molecular Sciences, 22(13), p.6729.
Roth, N., Mayrhofer, S., Gierus, M., Weingut, C., Schwarz, C., Doupovec, B., Berrios, R. and Domig, K.J., 2017. Effect of an organic acids based feed additive and enrofloxacin on the prevalence of antibiotic-resistant E. coli in cecum of broilers. Poultry science, 96(11), pp.4053-4060.
Rothhammer, V., Mascanfroni, I.D., Bunse, L., Takenaka, M.C., Kenison, J.E., Mayo, L., Chao, C.C., Patel, B., Yan, R., Blain, M. and Alvarez, J.I., 2016. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nature medicine, 22(6), pp.586-597.
Russell, J.B., 1992. Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling. Journal of applied bacteriology, 73(5), pp.363-370.
Rychlik, I., 2020. Composition and function of chicken gut microbiota. Animals, 10(1), p.103.
Saengkerdsub S, Anderson RC, Wilkinson HH, Kim WK, Nisbet DJ and Ricke SC. 2007a. Identification and quantification of methanogenic archaea in adult chicken ceca. Applied and Environmental Microbiology 73, pp. 353–356.
Saengkerdsub S, Herrera P, Woodward CL, Anderson RC, Nisbet DJ and Ricke SC.2007b. Detection of methane and quantification of methanogenic archaea in faeces from young broiler chickens using real-time PCR. Letters in Applied Microbiology 45, pp. 629–634.
Saki, A.A., Harcini, R.N., Rahmatnejad, E. and Salary, J., 2012. Herbal additives and organic acids as antibiotic alternatives in broiler chickens diet for organic production. African Journal of Biotechnology, 11(8), pp.2139-2145.
Sallam, K.I., Abd-Elghany, S.M., Hussein, M.A., Imre, K., Morar, A., Morshdy, A.E. and Sayed-Ahmed, M.Z., 2020. Microbial decontamination of beef carcass surfaces by lactic acid, acetic acid, and trisodium phosphate sprays. BioMed Research International, 2020.
Salminen, S. and Von Wright, A. eds., 2004. Lactic acid bacteria: microbiological and functional aspects (Vol. 139). CRC Press.
Salminen, S., Bouley, C., Boutron, M.C., Cummings, J.H., Franck, A., Gibson, G.R., Isolauri, E., Moreau, M.C., Roberfroid, M. and Rowland, I., 1998. Functional food science and gastrointestinal physiology and function. British journal of nutrition, 80(S1), pp.S147-S171.
Salzman, N.H., Underwood, M.A. and Bevins, C.L., 2007, April. Paneth cells, defensins, and the commensal microbiota: a hypothesis on intimate interplay at the intestinal mucosa. In Seminars in immunology. Academic Press. Vol. 19, No. 2, pp. 70-83.
Schulthess, J., Pandey, S., Capitani, M., Rue-Albrecht, K.C., Arnold, I., Franchini, F., Chomka, A., Ilott, N.E., Johnston, D.G., Pires, E. and McCullagh, J., 2019. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity, 50(2), pp.432-445.
Scicutella, F., Mannelli, F., Daghio, M., Viti, C. and Buccioni, A., 2021. Polyphenols and organic acids as alternatives to antimicrobials in poultry rearing: a review. Antibiotics, 10(8), p.1010.
Sellamani, M., Kalagatur, N.K., Siddaiah, C., Mudili, V., Krishna, K., Natarajan, G. and Rao Putcha, V.L., 2016. Antifungal and zearalenone inhibitory activity of P. pentosaceus isolated from dairy products on Fusarium graminearum. Frontiers in microbiology, 7, pp.890.
Shahidi, S., Yahyavi, M. and Zare, D.N., 2014. Influence of dietary organic acids supplementation on reproductive performance of freshwater Angelfish (Pterophyllum scalare). Global Veterinaria, 13(3), pp.373-377.
Shanahan, F., 2002. The host–microbe interface within the gut. Best practice & research Clinical gastroenterology, 16(6), pp.915-931.
Shin, J.M., Gwak, J.W., Kamarajan, P., Fenno, J.C., Rickard, A.H. and Kapila, Y.L., 2016. Biomedical applications of nisin. Journal of applied microbiology, 120(6), pp.1449-1465.
Simons, A., Alhanout, K. and Duval, R.E., 2020. Bacteriocins, antimicrobial peptides from bacterial origin: Overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms, 8(5), pp.639.
Smith D.P., and M.E. Berrang. 2006. Prevalence and numbers of bacteria in broiler crop and gizzard contents. Poult. Sci. 85:144-147
Smulikowska, S., Czerwiński, J. and Mieczkowska, A., 2010. Effect of an organic acid blend and phytase added to a rapeseed cake‐containing diet on performance, intestinal morphology, caecal microflora activity and thyroid status of broiler chickens. Journal of animal physiology and animal nutrition, 94(1), pp.15-23.
Soundharrajan, I., Kim, D., Kuppusamy, P., Muthusamy, K., Lee, H.J. and Choi, K.C., 2019. Probiotic and Triticale silage fermentation potential of P. pentosaceus and Lactobacillus brevis and their impacts on pathogenic bacteria. Microorganisms, 7(9), pp.318.
Sun, F., Hu, Y., Chen, Q., Kong, B. and Liu, Q., 2019. Purification and biochemical characteristics of the extracellular protease from P. pentosaceus isolated from Harbin dry sausages. Meat science, 156, pp.156-165.
Taheur, F.B., Kouidhi, B., Fdhila, K., Elabed, H., Slama, R.B., Mahdouani, K., Bakhrouf, A. and Chaieb, K., 2016. Anti-bacterial and anti-biofilm activity of probiotic bacteria against oral pathogens. Microbial pathogenesis, 97, pp.213-220.
Teguh, M., Hartoyo, B. and Tugiyanti, E., 2023. Provision of lactic acid as acidifier in probiotics-containing ration on protein performance of Sentul chicken. Jurnal Agripet, 23(1), pp.9-15.
Umam, M.K., H. S. Prayogi dan V.M. A. Nurgiartiningsih. 2015. Penampilan produksi ayam pedaging yang dipelihara pada sistem lantai kandang panggung dan kandang bertingkat. Jurnal Ilmu-Ilmu Peternakan. 24 (3), pp. 79 – 87
Umesaki, Y., Okada, Y., Matsumoto, S., Imaoka, A. and Setoyama, H., 1995. Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex‐germ‐free mouse. Microbiology and immunology, 39(8), pp.555-562.
Untoo, M., Banday, M.T., Afzal, I., Adil, S., Baba, I.A. and Khurshid, A., 2018. Potential of probiotics in poultry production. Journal of Entomology and Zoology Studies, 6(3), pp.1293-1300.
Utomo, G.S.M., Hidanah, S., Al Arif, M.A., Lokapirnasari, W.P. and Yuniarti, W.M., 2022. Analisis usaha pemberian probiotik bakteri asam laktat terhadap performa ayam kampung super. Jurnal Medik Veteriner, 5(1), pp.87-93.
Van der Klis, J.D. and Lensing, M. 2007. Wet litter problems relate to host–microbiota interactions. World Poultry, 23, pp. 20–22.
Van Immerseel, F., Russell, J.B., Flythe, M.D., Gantois, I., Timbermont, L., Pasmans, F., Haesebrouck, F. and Ducatelle, R., 2006. The use of organic acids to combat Salmonella in poultry: a mechanistic explanation of the efficacy. Avian Pathology, 35(3), pp.182-188.
Van Winsen, R.L., Lipman, L.J.A., Biesterveld, S., Urlings, B.A.P., Snijders, J.M.A. and van Knapen, F., 2001. Mechanism of Salmonella reduction in fermented pig feed. Journal of the Science of Food and Agriculture, 81(3), pp.342-346.
Varsha, K.K., Priya, S., Devendra, L. and Nampoothiri, K.M., 2014. Control of spoilage fungi by protective lactic acid bacteria displaying probiotic properties. Applied Biochemistry And Biotechnology, 172(7), pp.3402-3413.
Veronica, D.R., Martaningrum, E.T. and Lokapirnasari, W.P., 2021, March. The inclusion of moringa leaf extract fermentation in commercial feed to enhance feed conversion ratio and specific growth rate of tambaqui fish, Colossoma macropomum. In IOP Conference Series: Earth and Environmental Science , 718(1), pp. 012079). IOP Publishing.
Villageliũ, D.N. and Lyte, M., 2017. Microbial endocrinology: Why the intersection of microbiology and neurobiology matters to poultry health. Poultry science, 96(8), pp.2501-2508.
Vitanti, R.Y., Lamid, M., Lokapirnasari, W.P. and Amin, M., 2021, March. Dry matter, crude fiber and nitrogen free extract contents of Seligi leaf (Phyllanthus buxifolius) powder fermented with different duration and probiotic’s dose as a fish feed ingredient. In IOP Conference Series: Earth and Environmental Science (Vol. 718, No. 1, p. 012082). IOP Publishing.
Vlademirova, L. and S. Sourdjiyska. 1996. Test on the effect from adding probiotics to the combined feeds for chicks. Journal of Animal Science. 3, pp.36-39.
Vodnar, D.C., Paucean, A., Dulf, F.V. and Socaciu, C., 2010. HPLC characterization of lactic acid formation and FTIR fingerprint of probiotic bacteria during fermentation processes. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(2), pp.109-113.
Wang, C., Chang, T., Yang, H. and Cui, M., 2015. Antibacterial mechanism of lactic acid on physiological and morphological properties of Salmonella Enteritidis, Escherichia coli and Listeria monocytogenes. Food Control, 47, pp.231-236.
Wang, W.C., Yan, F.F., Hu, J.Y., Amen, O.A. and Cheng, H.W., 2018. Supplementation of Bacillus subtilis-based probiotic reduces heat stress-related behaviors and inflammatory response in broiler chickens. Journal of Animal Science, 96(5), pp.1654-1666.
Wang, Y., Sun, J., Zhong, H., Li, N., Xu, H., Zhu, Q. and Liu, Y., 2017. Effect of probiotics on the meat flavour and gut microbiota of chicken. Scientific Reports, 7(1), pp.1-13.
Wardhani, H.C.P., Lokapirnasari, W.P. and Soepranianondo, K., 2019. Penggunaan probiotik kombinasi Lactococcus lactis dan Lactobacillus acidophilus sebagai pengganti antibiotika pada ayam petelur yang diinfeksi Escherichia coli terhadap analisis usaha. Buana Sains, 19(1), pp.61-68.
Wardiana., N.I.,, Lokapirnasari, W.P ., Harijani, N. , Al-Arif, M.A., Ardianto., 2021. Probiotik Bacillus subtilis pada pakan ayam ras meningkatkan kualitas telur dengan perbedaan masa simpan. Jurnal Medik Veteriner, 4(1), pp.8-13.
Wei, S., Morrison, M. and Yu, Z., 2013. Bacterial census of poultry intestinal microbiome. Poultry Science, 92(3), pp.671-683.
Weinstein, P.D. and Cebra, J.J., 1991. The preference for switching to IgA expression by Peyer's patch germinal center B cells is likely due to the intrinsic influence of their microenvironment. The Journal of Immunology, 147(12), pp.4126-4135.
Werlang, C., Cárcarmo-Oyarce, G. and Ribbeck, K., 2019. Engineering mucus to study and influence the microbiome. Nature Reviews Materials, 4(2), pp.134-145.
Wibisono, C.B., Wahyudi, A.I., Arief, M. and Lokapirnasari, W.P., 2021. The potency of synbiotics in improving the growth rate, feed conversion ratio, protein retention and lipid retention in Nile tilapia (Oreochromis niloticus). Aquaculture, Aquarium, Conservation & Legislation, 14(1), pp.486-494.
Widodo, E., M. H. Natsir dan O. Sjofjan. 2018. Aditif pakan unggas pengganti antibiotik. UB Press. Malang
Wielen, P.W., S. Biesterveld, S. Notermans, H. Hofstra, B. A. Urlings, and F. Knapen. 2000. Role of volatile fatty acids in development of the cecal microflora in broiler chickens during growth. Applied and Environmental Microbiology. 66:2536-2540.
Wolfenden, A. D., J. L. Vicente, J. P. Higgins, R. L. Andreatti Filho, S. E. Higgins, B. M. Hargis and G. Tellez. 2007. Effect of organic acids and probiotics on Salmonella enteritidis infection in broiler chickens. International Journal of Poultry Science. 6, pp.403-405.
Xu, D. and Lu, W., 2020. Defensins: a double-edged sword in host immunity. Frontiers in immunology, 11, pp.764.
Xu, J. and Gordon, J.I., 2003. Honor thy symbionts. Proceedings of the National Academy of Sciences, 100(18), pp.10452-10459.
Yadav, S. and Jha, R., 2019. Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. Journal of Animal Science and Biotechnology, 10(1), pp.1-11.
Yang, X., Xin, H., Yang, C. and Yang, X., 2018. Impact of essential oils and organic acids on the growth performance, digestive functions and immunity of broiler chickens. Animal Nutrition, 4(4), pp.388-393.
Yeoman, C.J., Chia, N., Jeraldo, P., Sipos, M., Goldenfeld, N.D. and White, B.A., 2012. The microbiome of the chicken gastrointestinal tract. Animal Health Research Reviews, 13(01), pp.89-99.
Yin, H., Ye, P., Lei, Q., Cheng, Y., Yu, H., Du, J., Pan, H. and Cao, Z., 2020. In vitro probiotic properties of P. pentosaceus L1 and its effects on enterotoxigenic Escherichia coli-induced inflammatory responses in porcine intestinal epithelial cells. Microbial Pathogenesis, 144, p.104163.
Yulianto, B. and Lokapirnasari, W.P., 2018. Isolation and identification of lactic acid bacteria from the digestive tract of kampung chicken (Gallus gallus domesticus). The Philippine Journal of Veterinary Medicine, 55(1), pp.67-72.
Yulianto, A.B., Huda, K., CipkaPramudaWardhani, H. and Rahman, N.F.N., 2019. Characterization of cellulolytic bacteria as candidate probiotic for animal. Indian Veterinary Journal, 96(8), pp.29-31.
Yulianto, A.B., Lokapirnasari, W.P., Najwan, R., Wardhani, H.C.P., Rahman, N.F.N., Huda, K. and Ulfah, N., 2020a. Influence of Lactobacillus casei WB 315 and crude fish oil (CFO) on growth performance, EPA, DHA, HDL, LDL, cholesterol of meat broiler chickens. Iranian Journal of Microbiology, 12(2), pp.148.
Yulianto, A.B., Lokapirnasari, W.P., Suwanti, L.T., Yunus, M., Pratama, H.S., Wardiana, N.I., Irawan, P.I. and Mas' ad, K., 2020. Potency of probiotic combination as alternative growth promoters against antibiotics. Indian Veterinary Journal, 97(3), pp.20-22.
Yulianto, A.B., Suwanti, L.T., Widiyatno, T.V., Suwarno, S., Yunus, M., Tyasningsih, W., Hidanah, S., Sjofjan, O. and Lokapirnasari, W.P., 2021. Probiotic Pediococcus pentosaceus ABY 118 to modulation of ChIFN-γ and ChIL-10 in Broilers Infected by Eimeria tenella Oocyst. Veterinary Medicine International, 2021.
Yun, C.H., Lillehoj, H.S. and Lillehoj, E.P., 2000. Intestinal immune responses to coccidiosis. Developmental & Comparative Immunology, 24(2-3), pp.303-324.
Zhang, Z., Zhang, H., Chen, T., Shi, L., Wang, D. and Tang, D., 2022. Regulatory role of short-chain fatty acids in inflammatory bowel disease. Cell Communication and Signaling, 20(1), pp.1-10.
Zhao, L. and Lu, W., 2014. Defensins in innate immunity. Current opinion in hematology, 21(1), pp.37-42.
Zheng, J., Wittouck, S., Salvetti, E., Franz, C.M., Harris, H.M., Mattarelli, P., O’toole, P.W., Pot, B., Vandamme, P., Walter, J. and Watanabe, K., 2020. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International journal of systematic and evolutionary microbiology, 70(4), pp.2782-2858.
Zhou, H., Sun, J., Ge, L., Liu, Z., Chen, H., Yu, B. and Chen, D., 2020. Exogenous infusion of short-chain fatty acids can improve intestinal functions independently of the gut microbiota. Journal of Animal Science, 98(12), p.skaa371.
Zhu, X.Y., T. Zhong, Y. Pandya, and R.D. Joerger. 2002. 16S rRNA-based analysis of microbiota from the cecum of broiler chickens. Applied and Environmental Microbiology. Jan:124-137.

BISAC
- MED089000 Medical / Veterinary Medicine / General
- MED089020 Medical / Veterinary Medicine / Food Animal
Published
Series
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.