SERBA-SERBI CIPLUKAN (Physalis spp.) : Budi Daya, Manfaat, dan Cekaman Lingkungan

Authors

Dr. Diana Nurus Sholehah, S.Farm., Apt., M.Si
Prof. Hery Purnobasuki, MSi., PhD.
Universitas Airlangga
Prof. Dr. Sucipto Hariyanto, DEA
Universitas Airlangga

Keywords:

ciplukan, botani, jenis-jenis ciplukan, budi daya ciplukan, ciplukan di lahan kering, respons ciplukan terhadap salinitas, manfaat ciplukan

Synopsis

Buku ini disusun berdasarkan data-data ilmiah dan informasi populer di masyarakat yang meliputi aspek botani, habitat pertumbuhan, jenis-jenis ciplukan, budi daya ciplukan, studi ciplukan di lahan kering, respons ciplukan terhadap salinitas, dan manfaat ciplukan dalam kehidupan manusia. Salah satu permasalahan lahan ini adalah salinitas. Pemberdayaan lahan suboptimal memerlukan tanaman yang memiliki toleransi terhadap salinitas.
Hingga saat ini, tanaman ciplukan masih dianggap sebagai tanaman liar yang belum banyak dibudidayakan. Pemanfaatannya pun hanya oleh sebagian kecil masyarakat yang secara pengalaman telah merasakan manfaat dari ciplukan. Sementara saat ini di dunia kesehatan sedang tren menuju konsep back to nature, yaitu tindakan kembali menggunakan dan memanfaatkan sumber daya tumbuhan di sekitar sebagai bahanbahan herbal yang dapat dikonsumsi atau dimanfaatkan secara langsung maupun dengan cara diolah.

Downloads

Download data is not yet available.

References

Afshari, Rt., Angoshtari, R., & Kalantari, S. (2011). Effects of Light and Different Plant Growth Regulators on Induction of Callus Growth in Rapeseed (Brassica napus L.) Genotypes. Plant Omics, 4(2): 60–67.

Agius, C., von Tucher, S., & Rozhon, W. 2022. The Effect of Salinity on Fruit Quality and Yield of Cherry Tomatoes. Horticulturae, 8(59): 1-18.

Ahmed, S., Ahmed, S., Roy, S.K., Woo, S.H., Sonawane, K.D. & Shohael, A.M. 2019. Effect of salinity on the morphological, physiological and biochemical properties of lettuce (Lactuca sativa L.) in Bangladesh. Open Agriculture, 4: 361–373.

Akram, M., Akhtar, Javed, I., Wahid, A. & Rasul, E. 2002. Anatomical Attributes of Different Wheat (Triticum aestivum) Accessions/Varieties to NaCl Salinity. International Journal of Agriculture & Biology, 4(1), 166-168.

Assaha, D.V.M., Ueda, A., Saneoka, H., Al-Yahyai, R. & Yaish, M.W. 2017. The Role of Na+ and K+ Transporters in Salt Stress Adaptation in Glycophytes. Frontiers in Physiology, 8: 509.

Attia, H., N. Karray, N. Msilini & M. Lachaal. 2011. Effect of salt stress on gene expression of superoxide dismutases and copper chaperone in Arabidopsis thaliana. Biologia Plantarum. 55 (1): 159-163.

Beest BM & Willem RB. 1999. A taxonomic analysis of the species of Physalis L. (Solanaceae) based on morphological characters. In: Biodiversity, taxonomy and conservation of flowering plants : Calicut, Kerala, India, 1998 / Sivadasan, M. and P. Mathew. - Calicut, Kerala, India : Mentor Books, 1999.

Bertolino, L.T., Caine, R.S. & Gray, J.E. 2019. Impact of Stomatal Density and Morphology on Water-Use Efficiency in a Changing World. Frontiers in Plant Science, 10: 225.

Bhat, N.A., Jeri, L., Mipun, P. & Kumar, Y. 2018. Systematic Studies (Micro- Morphological, Leaf Architectural, Anatomical and Palynological) of Genus Physalis L. (Solanaceae) In Northeast India. Plant Archives, 18(2): 2229-2238.

Bobich, E.G & North, G.B. 2008. Structural Implications Of Succulence: Architecture, Anatomy, and Mechanics Of Photosynthetic Stem Succulents, Pachycauls, and Leaf Succulents Perspectives dalam Barrera, E.D & Smith, W.K. Biophysical Plant Ecophysiology: A Tribute to Park S. Nobel, 3–37. Mildred E. Mathias Botanical Garden, University of California, Los Angeles.

Cabot, C., JV. Sibole, J. Barcelo & C.Poschenrieder. 2014. Lessons from crop plants struggling with salinity. Plant Science.226: 2-13.

Carillo, P., Annuunziata, Pontecorvo, G., Fuggi, A. & Woodrow P. 2011. Salinity Stress and salt Tolerance dalam Shanker, A. dan Venkateswarlu, B. (eds): Abiotic Stress in Plant - Mechanism and Adaptation, 24-27. IntechOpen, Kroasia.

Carrasco-Ríos, L. & Pinto, M. 2014. Effect of Salt Stress on Antioxidant Enzymes and Lipid Peroxidation in Leaves in Two Contrasting Corn, ‘Lluteño’ and ‘Jubilee’. Chiliean Journal of Agricultural Research, 74: 89–95.

Casson, S. & Gray, J.E. 2008. Influence of Environmental Factors on Stomatal Development, New Phytologist, 178: 9–23.

Cebeci, E. & Hanci, F. 2015. The Influence of Different Salinity Level on Germination Performance of Golden Berry (Physalis peruviana) Seeds. Journal of Agricultural and Food Science, 3(2): 26-29.

Chen, T., Cai, X., Wu, X., Karahara, I., Schreiber, L. & Lin J. 2011. Casparian Strip Development and its Potential Function in Salt Tolerance. Plant Signaling & Behavior, 6(10): 1499-1502.

Colmenero-Flores, J.M., Franco-Navarro, J.D., Cubero-Font, P., Peinado-Torrubia, P. & Rosales, M.A. 2019. Chloride as a Beneficial Macronutrient in Higher Plants: New Roles and Regulation. International Journal of Molecular Science, 20: 1-32.

Curi, P.N., Carvalho, C.S., Salgado, D.L., Pio, R., Da Silva, D.F., Pinheiro, A.C.M. & De Souza, V.R. 2018. Characterization of Different Native American Physalis Species and Evaluation of Their Processing Potential as Jelly in Combination with Brie- Type Cheese. Food Science and Technology, 38(1): 112-119.

De Souza, C.L.M., de Souza, M.O., De Oliveira, R.S., Do Nascimento, M.N. & Pelacani, C. R. 2017. Biometric Characteristics of Fruits and Physiological Characterization of Seeds of Physalis Species (Solanaceae). Agrária - Revista Brasileira de Ciências Agrárias, 12(3): 277-282.

De Souza, M.O., Pelacani, C.R., Willems, L.A.J., Castro, R.D.D., Hilhorst. H.W.M., & Ligterink, W. 2016. Effect of osmopriming on germination and initial growth of Physalisangulata L.under Salt Stress and on Expression of Associated Genes. Annals of the Brazillian Academy of Science, 88(I Supl): 503-516.

Decombeix, A., Taylor, E.L. & Taylor, T.N. 2011. Root Suckering in a Triassic Conifer from Antarctica: Paleoecological and Evolutionary Implications. American Journal of Botany, 98(7): 1222–1225.

Demidchik, V., Straltsova, D., Medvedev, S.S., Pozhvanov, G.A., Sokolik, A. & Yurin, V. 2014. Stress-Induced Electrolyte Leakage: The Role of K+ Permeable Channels and Involvement in Programmed Cell Death and Metabolic Adjustment. Journal of Experimental Botany, 65(5): 1259–1270.

Demmings, E.M., Williams, B.R., Lee, C-R., Barba, P., Yang, S., Hwang, C-F., Reisch, B.I., Chitwood, D.H. & Londo, J.P. 2019. Quantitative Trait Locus Analysis of Leaf Morphology Indicates Conserved Shape Loci in Grapevine. Frontiers in Plant Science, 10: 1373.

Djakbé, J.D., Ngakou, A., Christian, W., Faïbawe, E. & Tchuenguem, N.F. 2017. Pollination and Yield Components of Physalis minima (Solanaceae) as Affected by the Foraging Activity of Apis mellifera (Hymenoptera: Apidae) and Compost at Dang (Ngaoundéré, Cameroon). International Journal of Agronomy and Agricultural Research, 11(3): 43-60.

Dubberstein, D., Oliveira, M.G., Aoyama, E.M., Guilhen, J.H., Ferreira, A., Marques, I., Ramalho, J.C. & Partelli, F.L. 2021. Diversity of Leaf Stomatal Traits among Coffea canephora Pierre ex A. Froehner Genotypes. Agronomy, 11: 1126.

Dyki, B., Janckiewisc, L S. & Staniazsek M. 1998. Anatomical Structure and Surface Micromorphology of Tomatillo Leaf and Flower (Physalis ixocarpa Brot., Solanaceae). Acta Societatis Botanicorum Poloniae, 67(2): 181-191.

Ekeke, C., Obute, G.C. & Ogazie, C.A. 2019. A Comparative Anatomical and Epidermal Analysis of Physalis angulata L. and Physalis micrantha L. (Solanaceae). Jordan Journal of Biological Sciences, 12(1): 1-4.

Elia, A., Serio, F. & Parente, A. 2001. Electrical Conductivity of Nutrient Solution, Plant Growth and Fruit Quality of Soilless Grown Tomato. Proc. 5th IS Protect. Cult. Mild Winter Clim. Acta Hort. 559, ISHS. Editor: Fernández, M. & Castilla. Hal: 503-508.

El-Mogy, M.M., Garchery, C. & Stevens, R. 2018. Irrigation with Salt Water Affects Growth, Yield, Fruit Quality, Storability and Marker-Gene Expression in Cherry Tomato. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science, 68(8): 727–737.

El-Swaify, S.A. 2000. Soil and Water Salinity, dalam Silva, J.A & Uchida, R. K (eds): Plant Nutrien Management in Hawai’s Soil, Approach for Tropical and Subtropical Agriculture. 151-158. Collage of Tropical Agriculture and Human Resources, University of Hawai.

Eppel A, Keren N, Salomon E, Volis S, Rachmilevitch S. The response of Hordeum spontaneum desert ecotype to drought and excessive light intensity is characterized by induction of O2 dependent photochemical activity and anthocyanin accumulation. Plant Sci. 2013 Mar;201-202:74-80. doi: 10.1016/j.plantsci.2012.12.002. Epub 2012 Dec 8. PMID: 23352404.

Nugraha, M.K.A. & Ernah. 2018. Strategi Pengembangan Agribisnis Buah Ciplukan (Physalis peruviana) di Waaida Farm, Jawa Barat. Agricore, 3(2): 537-547.

Etienne, A., Génard, M., Lobit, P., Mbeguié-A-Mbéguié, D. & Bugaud, C. 2013. What Controls Fleshy Fruit Acidity? A Review of Malate and Citrate Accumulation in Fruit Cells. Journal of Experimental Botany, 64(6): 1451–1469.

FAO.,2005,Panduan Lapang FAO : 20 Hal Untuk Diketahui Tentang Dampak Air Laut Pada Lahan Pertanian di Propinsi NAD, www.fao.org/ag/20_things_on_salinity_bahasa.

Figueiredo, M.C.C., Passos, A.R., Hughes, F.M., Dos Santos, K.S., Da Silva, A.L. & Soares,T.L. 2020. Reproductive Biology of Physalis angulata L. (Solanaceae). Scientia Horticulturae, 267: 109307.

Finsinger, W., Dos Santos, T. & Mc Key, D. 2013. Estimating Variation in Stomatal Frequency at Intra-Individual, Intra-Site, and Inter-Taxonomic Levels in Populations of the Leonardoxa africana (Fabaceae) Complex over Environmental Gradients in Cameroon. Comptes Rendus Geoscience, 345: 350–359.

Fischer, G. 1995. Effect of Root Zone Temperature and Tropical Altitude on The Growth, Development and Fruit Quality of Cape Gooseberry (Physalis peruviana L.), Tesis, Faculty of Agriculture and Horticulture, Humboldt Universität zu Berlin, Berlin.

Fischer, G and Melgarejo, LM. 2020. The ecophysiology of cape gooseberry (Physalis peruviana L.) - an Andean fruit crop. A review. Revista Colombiana de Ciencias Hortícolas. 14. 76-89.

Fischer, G., Herrera, A., & Almanza, P. J. 2011. Cape gooseberry ( Physalis peruviana L.). Postharvest Biology and Technology of Tropical and Subtropical Fruits, 374–397e. doi:10.1533/9780857092762.374

Follet, R.H.L.M. & Donahue, R.L. 1981. Fertilizer and Soil Amandments. Prentice-Hall, Inc. Englewood Cliff: New Jersey.

Franco-Navarro, J.D., Javier, B., Rosales, M.A., Cubero-Font, P., Talón, M., & Colmenero-Flores, J.M. 2016. Chloride Regulates Leaf Cell Size and Water Relations in Tobacco Plants. Journal of Experimental Botany, 67(3): 873–891.

Gama, PBS., S. Inagana, K. Tanaka and R. Nakazawa, 2007, Physiological response of common bean (Phaseolus vulgaris. L.) seedlings to salinity stress, African J. of Biotech, vol. 2, pp. 79 – 88

Gan, Y., Lei, Z., Shen, Z., Zhang, Y., & Wang, G. 2010. Stomatal Clustering, a New Marker for Environmental Perception and Adaptation in Terrestrial Plants. Botanical Studies, 51: 325-336.

Geilfus, C.M. 2017. Chloride: From Nutrient to Toxicant. Plant and Cell Physiology, 59: 887–896.

Golob, A., Stibilj, V., Nečemer, M., Kump, P., Kreft, I., Hočevar, A., Gaberščik, A. & Germ, M. 2018. Calcium Oxalate Druses Affect Leaf Optical Properties in Selenium Treated Fagopyrum tataricum. Journal of Photochemistry and Photobiology B: Biology, 180: 51-55.

Gondim, F. A., Gomes-Filho, E., Costa, J.H., Alencar, N.L.M. & Prisco, J.T. 2012. Catalase Plays a Key Role in Salt Stress Acclimation Induced by Hydrogen Peroxide Pretreatment in Maize. Plant Physiology and Biochemistry, 56: 62-71.

Gorham, J. 1995. Mechanisms of salt tolerance in halophytes. In Choukr-Allah,R, CV. Malcolm & A. Hamdy (Eds.). Halophytes and Biosaline Agriculture.Marcel Dekker, Inc. New York. USA. 31-53.

Gupta, B. & Huang, B. 2014. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical and Molecular Characterization. International Journal of Genomics, 2014: 1-18.

Hadiyanti, N., Supriyadi & Pardono. 2018. Keragaman Beberapa Tumbuhan Ciplukan (Physalis spp.) di Lereng Gunung Kelud, Jawa Timur. Berita Biologi, 17(2): 135-146.

Hameed, M., Ashraf, M., Naz, N. & Al-Qurainy, F. 2010. Anatomical Adaptations of Cynodon dactylon (L.) Pers., from the Salt Range Pakistan, to Salinity Stress. Pakistan Journal of Botany, 42(1): 279-289.

Haryani, N.S., Kustiyo, Khomarudin, R. & Parwali. 2006. Perubahan Kerusakan Lahan Pulau Madura Menggunakan Data Penginderaan Jauh dan SIG. Jurnal Penginderaan Jauh, 3(1): 98-107.

Hasanuzzaman, M., Raihan, M.R.H., Masud, A.A.C., Rahman, K., Nowroz, F., Rahman, M., Nahar, K. & Fujita, M. 2021. Regulation of Reactive Oxygen Species and Antioxidant Defense in Plants under Salinity. International Journal of Molecular Science, 22: 9326.

Hassan, N.M., Serag, M.S., El-Feky, F.M. & Nemat, M.M. 2008. In Vitro Selection of Mung Bean and Tomato for Improving Tolerance to NaCl. Annals of Applied Biology, 152: 319-330.

Helaly, A. A., Goda, Y., El-Rehim A. S. A., Mohamed, A.A., & El Zeiny, O.A.H. 2017. Effect of Irrigation with Different Levels of Saline Water Type on Husk Tomato Productivity. Advances in Plants & Agriculture Research, 6(4):114-120.

Herrera M., Axel Mauricio; Fischer, Gerhard; Chacón S., María Isabel Agronomical evaluation of cape gooseberries (Physalis peruviana L.) from central and north-eastern Colombia Agronomía Colombiana, vol. 30, núm. 1, enero-abril, 2012, pp. 15-24

Hidayah, Z. & Suharyo, O.S., 2018. Analisis Perubahan Penggunaan Lahan Wilayah Pesisir Selat Madura. Rekayasa, 11(1): 19-32.

Hill K & Guerin G & Hill R & Watling J. 2014. Temperature influences stomatal density and maximum potential water loss through stomata of Dodonaea viscosa subsp. angustissima along a latitude gradient in southern Australia. Australian Journal of Botany. 62. 657-665.

Hongqiao, L., Suyama, A., Mitani-Ueno, N., Hell, R. & Maruyama, Nakashita. 2021. A Low Level of NaCl Stimulates Plant Growth by Improving Carbon and Sulfur Assimilation in Arabidopsis thaliana. Plants, 10: 1-12.

Hossain, M.D., Hanafi, M.M., Saleh, G., Foroughi, M., Behmaram, R. & Noori, Z. 2012. Growth, Photosynthesis and Biomass Allocation of Different Kenaf (Hibiscus cannabinus L.) Accessions Grown On Sandy Soil. Australian Journal of Crop Science, 6(3): 480-487.

Hu, Y and U, Schmidhalter, 2005, Drought and salinity: A comparison of their effects on mineral nutrition of plants, J. Plant Nutr. Soil Sci. Vol 168, pp. 541 – 549

Huang, W., Ratkowsky, D.A., Hui, C., Wang, P., Su, J. & Shi, P. 2019. Leaf Fresh Weight versus Dry Weight: Which is better for describing the Scaling Relationship between Leaf Biomass and Leaf Area for Broad-Leaved Plants? Forests, 10: 256.

Hussain, S., Shaukat, M., Ashraf, M., Zhu, C., Jin, Q. & Zhang, J. 2019. Salinity Stress in Arid and Semi-Arid Climates: Effects and Management in Field Crops, dalam Hussain, S. (eds): Climate Change and Agriculture, hal 1-28. IntechOpen, Kroasia.

Iwansyah, A.C. 2020. Comparative Evaluation of Proximate Composition and Vitamin C of Physalis angulata Linn and Physalis peruviana Linn in West Java, Indonesia. IOP Conferrence Series: Earth Environment Science: 462 012012.

Jagadish, S.V.K., Bahuguna, R.N., Djanaguiraman, M., Gamuyao, R., Prasad, P.V. & Vand Craufurd, P.Q. 2016. Implications of High Temperature and Elevated CO2 on Flowering Time in Plants. Frontiers in Plant Science, 7:913.

Jamil, M., ur Rehman, S. & Rha, E.S. 2014. Response of Growth, PSII Photochemistry and Chlorophyll Content to Salt Stress in Four Brassica Species. Life Science Journal, 11(3): 139-145.

Jia, Z., Ji-yun, N., Jing, L., Hui, Z., Ye, L., Farooq, S. & BACHA, A.S.S. & Jie, W. 2020. Evaluation of Sugar and Organic Acid Composition and Their Levels in Highbush Blueberries from Two Regions of China. Journal of Integrative Agriculture, 19(9): 2352–2361.

Karabourniotis, G. 1998. Light-Guiding Function of Foliar Sclereids in the Evergreen Sclerophyll Phillyrea latifolia: a Quantitative Approach. Journal of Experimental Botany: 49(321): 739–746.

Katerji, N., JW. van Hoorn, A. Hamdy, M. Mastrorilli, E. Mou & Karzel.1997. Osmotic adjustment of sugar beets in response to soil salinity and its influence on stomatal conductance, growth and yield. Agricultural Water Management. 34: 57-69.

Khan, M.M., Al-Mas'oudi, R.S.M., Al-Said, F & Khan I. 2013. Salinity Effects on Growth, Electrolyte Leakage, Chlorophyll Content and Lipid Peroxidation in Cucumber (Cucumis sativus L.). International Conference on Food and Agricultural Sciences; International Proceedings of Chemical, Biological and Environmental Engineering. Vol 55 (IPCBEE). Hal: 67-72.

Koelewijn, H.P. 2004. Rapid Change in Relative Growth Rate between the Vegetative and Reproductive Stage of the Life Cycle in Plantago coronopus. New Phytologist, 163: 67-76.

Konyar, S.T., Öztürk, N. & Dane, F.Occurrence, Types and Distribution of Calcium Oxalate Crystals in Leaves and Stems of Some Species of Poisonous Plants. Botanical Studies 55:32.

Kotagiri, D. & Kolluru, V.C. 2017. Effect of Salinity Stress on the Morphology & Physiology of Five Different Coleus Species. Vol. 10(4), 1639-1649. Biomedical & Pharmacology Journal, 10(4): 1639-1649.

Kozlowski, T.T. 1997. Response of Woody Plants to Flooding and Salinity. Tree Physiology Monograph I: 1-29. Heron Publishing, Victoria, Kanada.

Kreszies T., Shellakutti, N., Osthoff, A., Yu, P., Baldauf, J.A., Zeisler-Dichl, V.V., Ranathunge, K., Hochholdinger, F. & Schreiber, L. 2019. Osmotid Stress Enhances Suberization of Apoplastic Barriers in Barley Seminal Roots: Analysis of Chemical, Transcriptomic and Physiological Responses. New Phytologist, 221: 180-194.

Kristiono, A, Purwaningrahayu, RD, & Taufiq, A, 2013, Respons Tanaman Kedelai, Kacang Tanah, dan Kacang Hijau Terhadap Cekaman Salinitas, Buletin Palawija, no. 20, hal. 45 – 60

Kronzucker, H.J., Coskun, D., Schulze, L.M., Wong, J.R. & Britto, D.T. 2013. Sodium as Nutrient and Toxicant. Plant Soil, 369:1-23.

Kudo, G. 2003. Anther Arrangement Influences Pollen Deposition and Removal in Hermaphrodite Flowers. Functional Ecology, 17: 349-355.

Lestari, D.A. & Fiqa, A.P. 2020. Environmental Factors Influence on Flowering and Fruiting Period of Selected Essential Oil Plants from Annonaceae. Biodiversitas, 21(3): 910-921.

Levitt, L. 1980. Responses of Plants to Environmental Stresses Vol II : water, radiation, salt and other stresses. Department of Plant Biology, Carnegie Institution Of Washington Stanford, California. USA 607pp.

Li, A., Chen, B., Li, G., Zhou, M., Li, Y., Ren D., Lou H., Wang, X. & Shen T. 2017. Physalis alkekengi L., var. franchetti (Mast) Makino: an Ethnomedical, Phytochemical and Pharmacological Review, Journal of Ethnopharmacology, 210: 260-274.

Liu MY, Wang X, Li C, Yu D, Li T, Sun Za. 2023.Research progress on the chemical components and pharmacological effects of Physalis alkekengi L. var. franchetii (Mast.) Heliyon 9, e20030

Maathuis, F.J.M. 2014. Sodium in Plants: Perception, Signalling, and Regulation of Sodium Fluxe. Journal of Experimental Botany, 65(3): 849–858.

Machado, R. M. A. & Serralheiro. 2017. Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae, 3(30): 1-13.

Miranda, D., Fischer, G. & Ulrichs, C. 2010. Growth of Cape gooseberry (Physalis peruviana L.) plants affected by salinity. Journal Application of Botany and Food Quality, 83: 175-181.

Mirzaee, F., Hosseini, A.S., Askian, R. & Azadbakht. 2019. Therapeutic Activities and Phytochemistry of Physalis Spesies Based on Traditional and Modern Medicine. Research Journal of Pharmacognosy, 6(4): 79-96.

Moya, R., Gondaliya, A.D. & Rajput, K.S. 2017. Stem anatomy and development of interxylary phloem in Strychnos bredemeyeri (Loganiaceae). Anales de Biología, 39: 75-87.

Mulyani, A. & Sarwani, M. 2013. Karakteristik dan Potensi Lahan Sub Optimal untuk Pengembangan Pertanian di Indonesia. Jurnal Sumber Daya Lahan, 7(1): 47-55.

Muniz, J., Kretzschmar, A.A., Rufato, L., Pelizza, T.R., Rufato, A.D.R. & De Macedo, T.A. 2014. General Aspect of Physalis Cultivation. Ciencia Rural, 44(6): 964-970.

Munns, R. & Gilliham, M. 2015. Salinity Tolerance of Crops – What is the Cost New Phytologist, 208: 668-673.

Munns, R. & Tester, M. 2008. Mechanisms of Salinity Tolerance. Annual Review of Plant Biology. 59: 651-681.

Mustafa, F., F. Ahmad, M. Hameed & B. Sadia, 2019. Anatomical adaptations for drought tolerance in Lasiurus scindicus from Punjab, Pakistan. International Journal of Agricultural Biology, 22: 290‒298.

Nadhifah, A. & Suratman, Pitoyo, A. 2016. Kekerabatan Fenetik Ciplukan (Physalis angulata L.) di Wilayah eks Karesidenan Surakarta Berdasarkan Karakter Morfologis, Palinologis dan Pola Pita Isozim. Jurnal Tumbuhan Obat Indonesia, 9(1): 1-10.

Nassar, R.M.A., Kamel, H.A., Ghoniem, A.E., Alarcón, J.J., Sekara, A., Ulrichs, C. & Abdelhamid, M.T. 2020. Physiological and Anatomical Mechanisms in Wheat to Cope with Salt Stress Induced by Seawater. Plants, 9: 237.

Naz, N., Hameed, M., Ashraf, M., Al-Qurainy, F. & Arshad, M. 2010. Relationships between Gas-Exchange Characteristics and Stomatal Structural Modifications in Some Desert Grasses under High Salinity. Photosynthetica, 48 (3): 446-456.

Nugraha, M.K.A. & Ernah. 2018. Strategi Pengembangan Agribisnis Buah Ciplukan (Physalis peruviana) di Waaida Farm, Jawa Barat. Agricore, 3(2): 537-547.

Nurdin. 2011. Penggunaan Lahan Kering Di Das Limboto Provinsi Gorontalo Untuk Pertanian Berkelanjutan. J. Litbang Pertanian, 30(3): 98 – 107.

Nurit-Silva, K., Costa-Silva, R., Basilio, I. J. L. D. & Agra, M. F. 2012. Leaf Epidermal Characters of Brazilian Species of Solanum section Torva as taxonomic evidence. Botany, 90: 806–814.

Olorode, O., Olayanju, S. & Garba, A. 2013. Physalis (Solanaceae) in Nigeria. Ife Journal of Science, 15(1): 101-109.

Noumova, N., Nechaeva, T., Savenkov, O. & Fotev, Y. 2019. Yield and Fruit Properties of Husk Tomato (Physalis phyladelphica) Cultivars Grown in the Open Field in the South of West Siberia. Horticulturae, 5(19): 1-12.

Ostonen, I., Püttsepp, U., Biel, C., Alberton, O., Bakker, M.R., Lõhmus, K., Majdi, H., Metcalfe, D., Olsthoorn, A.F.M., Pronk, A., Vanguelova, E., Weih, M. & Brunner, I. 2007. Specific root length as an indicator of environmental change. Plant Biosystems, 141:3, 426-442.

Ozdemir, C., Hamurcu, M., Akyol, Y., Kocabas, O., Ozdemir, A. & Bozdag, B. 2017. Effect of Nitric Oxide on The Anatomy of Two Triticum aestivum L. Genotypes under Salinity Stress and Statistical Evaluation. Advances in Food Sciences, 39(1): 14-21.

Patakas, A. 2012. Abiotic Stress-Induced Morphological and Anatomical Changes in Plants. Dalam Ahmad, P. dan Prasad, M M. N. V (eds): Abiotic Stress Response in Plants Metabolism, Productivity and Sustainability, 21-28. Springer, New York.

Peel, J.R., Sánchez, M.C.M., Portillo, J.L. & Golubov, J. 2017. Stomatal Density, Leaf Area and Plant Size Variation of Rhizophora mangle (Malpighiales: Rhizophoraceae) Along a Salinity Gradient in the Mexican Caribbean. Revizta Biologi Tropical, 65: 701–712.

Pengfei Z, Yanyan D, 千家, 正照, Mori N & Ito K. 2017. Interactions of Salinity Stress and Flower Thinning on Tomato Growth, Yield, and Water Use Efficiency. Communications in Soil Science and Plant Analysis, 48. 1-11. 10.1080/00103624.2017.1411508

Peppe, D. J., Royer, D. L., Cariglino, B., Oliver, S.Y., Newman, S., Leigh E., Enikolopov, G., Fernandez-Burgos, M., Herrera, F., Adams, J.M., Correa, E. & Wright I.J. 2011. Sensitivity of Leaf Size and Shape to Climate: Global Patterns and Paleoclimatic Applications. New Phytologist, 190: 724–739.

Pequeno, A., Miranda, Y., Rodriguez, G., Valverde, V., Alvarez, L., da Silva, T. & Junior, V.S. 2017. Effect of Physalin on the Modulation of NF-kB and its Possible Implication for Glucose Homeostasis. International Journal of Herbal Medicine, 5(6): 30-33.

Perez-Labrada, F., Lopez-Vargaz, E.R., Ortega-Ortiz, H., Cadenas-Pliego, G., Benavides- Mendoza, A. & Juarez-Maldonado, A. 2019. Responses of Tomato Plants underSaline Stress to Foliar Application of Copper Nanoparticles. Plants, 8: 151-167.

Perna, A., Intaglietta, I., Simonetti, A. & Gambacorta, A. 2013. A Comparative Study on Phenolic Profile, Vitamin C Content and Antioxidant Activity of Italian Honeys of Different Botanical Origin. International Journal of Food Science Technology, 48: 1899–1908.

Pimentel, D., Berger, B., Filiberto, D., Newton, M., Wolfe, B., Karabinakis, E. and Nandagopal, S. (2004) Water Resources: Agricultural and Environmental Issues. BioScience, 54, 909-918.

Pitojo, S. 2002. Ceplukan Herba Berkhasiat Obat. Hal 14-34. Kanisius, Jogjakarta

Popova, V., Ivanova, T., Stoyanova, M., Mazova, N., Dimitrova-Dyulgerova, I., Stoyanova, A., Ercisli, S., Assouguem, A., Kara, M., Topcu, H., Farah, A., Elossaily, G., Shahat, A. & Shazly, G. (2022). Phytochemical analysis of leaves and stems of Physalis alkekengi L. (Solanaceae). Open Chemistry, 20(1), 1292-1303. https://doi.org/10.1515/chem-2022-0226

Puente, L.A., Pinto-Munoz, C.A., Castro, E.S. & Cortes, M. 2011. Physalis Peruviana Linnaeus, the Multiple Properties of a Highly Functional Fruit: A Review. Food Research International, 44: 1733-1740.

Purwaningrahayu, R.D. 2016. Karakter Morfofisiologi dan Agronomi Kedelai Toleran Salinitas. Iptek Tanaman Pangan, 11(1), 35-48.

Qaderi, M.W., Martel, A.B. & Dixon, S.L. 2019. Environmental Factors Influence Plant Vascular System and Water Regulation. Plants, 8(65): 1-23.

Rachman, A, Subiksa IGM & Wahyunto. 2007. Perluasan Areal tanaman kedelai ke lahan suboptimal. Dalam Sumarno, Suyamto, A.Widjono, Hermanto & H.Kasim(Eds.) Kedelai : Teknik Produksi dan Pengembangan. Badan Penelitian dan Pengembangan Pertanian. Pusat Penelitian Tanaman Pangan. pp185-204

Rahman, A., Dariah, A. & Sutono, S. 2018. Pengelolaan Sawah Salin Berkadar Garam Tinggi. IAARD Press. Hal: 3-7.

Rahneshan, Z., Nasibi, F. & Moghadam, A.A. 2018. Effects of Salinity Stress on Some Growth, Physiological, Biochemical Parameter and Nutrients in Two Pistachio (Pistacia vera L.) Rootstock. Journal of Plant Interaction, 13(1): 73-82.

Ramadan, M.F. 2011. Bioactive Phytochemicals, Nutritional Value, and Functional Properties of Cape Gooseberry (Physalis peruviana): an Overview, 44: 1830-1836.

Reddy, K.R. & Matcha, S.K. 2010. Quantifying nitrogen effects on castor bean (Ricinus communis L.) development, growth, and photosynthesis. Industrial Crops and Products. 13: 185- 191.

Reinhardt, D.H. & Rost, T.L. 1995. Salinity Accelerates Endodermal Development and Induces an Exodermis in Cotton Seedling Roots. Environmental and Experimental Botany, 35(4): 563-574.

Repková, J., Brestič, M. & Olšovská, K. 2009. Leaf growth under temperature and light control. Plant Soil Environ, 55 (12): 551–557.

Rezende, R.A.L.S., Rodrigues, F.A., Soares, J.D.R., Silveira, H.R.O., Pasqual, M. & Dias, G.M.G. 2018. Salt Stress and Exogenous Silicon Influence Physiological and Anatomical Features of In Vitro Grown Cape Gooseberry. Ciencia Rural, 48(1):1-9.

Rhoades, J.D., Chanduvi, S. & Lesch, S. 1999. Soil Salinity Assesment Method and Interpretation of Electrical Conductivity Measurements. FAO. Hal: 1-5.

Rodrigues, F.A., Soares, J.D.R., Silva, R.A.L., Penoni, E.S., Pasqual, M., Pereira, F.J. & De Castro, E.M. 2014. Anatomy of Vegetative Organs and Seed Histochemistry of Physalis peruviana L. Australian Journal of Crop Science, 8(6):895-900.

Rosales, M.A., Franco-Navarro, J.D., Peinado-Torrubia, P., Díaz-Rueda, P., Álvarez, R. & Colmenero-Flores, J.M. 2020. Chloride Improves Nitrate Utilization and NUE in Plants. Frontiers in Plant Science. 11: 442.

Rouphaela, Y., Kyriacoub, M.C., Petropoulosc, S.A., De Pascalea, S. & Colla, G. 2018. Improving Vegetable Quality in Controlled Environments. Science Horticulturae, 234: 275–289.

Saavedra JCM, Zaragoza FAR, Toledo DC, Hernández VCS, Vargas-Ponce O (2019) Agromorphological characterization of wild and weedy populations of Physalis angulata in Mexico. Sci Hort. 26:86-94.

Sadiyah, H., Soegianto, A., Waluyo, B. & Ashari. 2020. Preliminary Characterization Of Groundcherry (Physalis angulata) from East Java Province, Indonesia Based on Morpho-agronomic Traits. Biodiversitas, 21(2): 759-769.

Salim, Z. & Munadi, E. 2017. Info Komoditi Tanaman Obat. Badan Pengkajian dan Pengembangan Perdagangan Kementrian Perdagangan Republik Indonesia: Jakarta.

Sarker U, Islam MT, Oba S. 2018. Salinity Stress Accelerates Nutrients, Dietary Fiber, Minerals, Phytochemicals and Antioxidant Activity In Amaranthus Tricolor Leaves. PLoS One 13: e0206388.

Seleem E.A., & Nassar, R.M.A. 2021. Morphological and Anatomical Studies on Physalis peruviana L. and Physalis ixocarpa Brot. Exhornem. Journal of Plant Production, 12(11): 1179-1183.

Shah, P. & Bora, K.S. 2019. Phytochemical and Therapetic Potential of Physalis Species: a Review. Journal of Pharmacy and Biological Sciences, 14 Issue 4 Ser III: 34-51.

Sharma, A., Rana, C., Singh, S. & Katoh, V. 2016. Soil Salinity Causes, Effects and Management in Cucurbits, dalam Pessarakli, M. (eds): Handbook of Cucurbits: Growth, Cultural Practice and Physiology, 419-425. CRC Press, London.

Shaw, J.M.H. 2011. Physalis Linnaeus, dalam Cullen, J., Knees, G. & Cubey, H.S. (eds): The European Garden Flora Flowering Plants Volume V Angiospermae- Dicotyledon, 134. Cambridge University Press, Meksiko.

Sholehah DN and Setiawan E (2019). Report of Physalis angulata L. from Madura: Quality profile. IOP Conference Series: Earth and Environmental Science 276:1-7.

Sholehah D.N., Setiawan E., Ermavitalini D., Khasanah M., Utami E.S.W., Hariyanto S. & Purnobasuki H. 2022. Enhancing fruit quality of three Physalis sp. throughout foliar nutrition. Plant Soil Environment, 68: 231–236.

Sholehah, D.N., Hariyanto, S. & Purnobasuki, H. 2021a. Flower appearance of six Physalis ixocarpa genotype. AIP Conference Proceedings 2353, 030006.

Sholehah, D.N., Hariyanto, S. & Purnobasuki, H. 2021b. Fruit development of groundcherry (Physalis angulata L.) in dryland. Australian Journal of Crop Science, 15(8): 1186-1191.

Shrivastava, P. & Kumar, R. 2015. Soil salinity: A Serious Environmental Issue and Plant Growth Promoting Bacteria as one of the Tools for ists Alleviation. Saudi Journal of Biological Science, 22: 123-131.

Srivastava, S. 2022. Morpho-Anatomical Adaptation against Salinity, dalam Kimatu, J. N. (ed). Plant Defense Mechanisms, IntechOpen, London.

Singh, D.B., Ahmed, N., Lal S., Mirza, A, Sharma, O.C. & Pal, O.O. 2014. Variation In Growth, Production and Quality Attributes of Physalis Species under Temperate Ecosystem. Fruits, 69(1): 31-40.

Singh, N., Singh, S., Maurya, P., Arya, M., Khan, F., Dwivedi, D.H. & Saraf, S.A. 2019. An Updated Review on Physalis peruviana Fruit : Cultivational, Nutraceutical and Pharmaceutical Aspects. Indian Journal of Natural Products and Resources, 10(2): 97-110.

Sitompul, SM. & B. Guritno. 1995. Analisis Pertumbuhan Tanaman. Gajah Mada University Press. 412hlm.

Sobir, Miftahudin & Helmi, S. 2018. Respon Morfologi dan Fisiologi Genotipe Terung (Solanum melongena L.) Terhadap Cekaman Salinitas. Jurnal Hortikultura Indonesia, 9(2): 131-138.

Srivastava, S. 2022. Morpho-Anatomical Adaptation against Salinity. In: Kimatu, J. N., editor. Plant Defense Mechanisms. London: Intech Open.

Steenis, V.C.G.G.J. 1997. Flora untuk Sekolah di Indonesia. Diterjemahkan oleh Moeso, S., Soenarto, H., Soeryo, S.A., Wibisono dan Margono, P. Pradnya Paramita: Jakarta.

Strock, C.F., Burridge, J.D., Niemiec, M.D., Brown, K.M. & Lynch, J.P. 2020. Root Metaxylem and Architecture Phenotypes Integrate to Regulate Water Use Under Drought Stress. Plant Cell Environment. 2020: 1–19.

Subbarao, G.V., Ito, O., Berry W. L. & Wheeler, R.M. 2003. Sodium—A Functional Plant Nutrient. Critical Reviews in Plant Sciences, 22(5): 391-416.

Sukandar, Handayani, M., Dewi, C.S.U., Harsindhi, C.J., Maulana, A.W., Supriyadi & Bahroni, A. 2016. Profil Desa Pesisir Provinsi Jawa Timur Volume III (Kepulauan Madura). Bidang Kelautan, Pesisir dan Pengawasan Dinas Perikanan dan Kelautan Provinsi Jawa timur. Hal 3-7.

Sukarman, K dan Erna, S. 2012. Evaluasi Lahan Salah Satu Upaya Menuju Pertanian Ramah Lingkungan. Prosiding Seminar Nasional Pertanian Ramah Lingkungan. Badan Penelitian Dan Pengembangan Pertanian Kementerian Pertanian. Hal : 735-745.

Sullivan, J.R. 2004. The Genus Physalis (Solanaceae) in the Shouteastern United States. Rhodora, 106 (928), 305-326.

Supriyadi, S. 2007. Kesuburan Tanah di Lahan Kering Madura. Embryo, 4(2): 124-131.

Syah, A.F. 2010. Indikasi Kenaikan Muka Air Laut di Pesisir Kabupaten Bangkalan Madura. Tesis, Fakultas Kelautan, Institut Pertanian Bogor: Bogor.

Tahjib-Ul-Arif, Md., Sohag, A.A.M., Afrin, S., Bashar, K.K., Afrin, T., Mahamud, A.G.M.S.U., Polash, M.A.S., Hossain, M.T., Sohel, M.A.T., Brestic, M. & Murataet, Y. 2019. Differential Response of Sugar Beet to Long-Term Mild to Severe Salinity in a Soil-Pot Culture. Agriculture, 9:223.

Tajima, R. 2021). Importance of individual root traits to understand crop root system in agronomic and environmental contexts Ryosuke Tajima. Breeding Science, 71: 13- 19.

Thepsithar, C. & Thongpukdee, A. 2013. Comparative Micro-Morphology, Anatomy and Architecture of Leaf of Physalis. International Journal of Bioengineering and Life Sciences, 7(8): 806-810.

Wahua, C. & Sam, S.M. 2013. Comparative Chemotaxonomic Investigations on Physalis angulata Linn. and Physalis micrantha Linn. (Solanaceae). Asian Journal of Applied Sciences, 1(5) 220-228.

Wang, M., Ding, Y., Wang, Q., Wang, P., Han, Y., Gu, Z. & Yang, R. 2020. Nacl Treatment on Physio-Biochemical Metabolism and Phenolics Accumulation in Barley Seedlings, Food Chemistry, 331: 127282.

Wang, M., Zhang, J., Guo, Z., Guan, Y., Qu, G., Liu, J., Guo, Y. & Yan, X. 2010. Morphological Variation in Cynodon dactylon (L.) Pers., and its Relationship with the Environment along a Longitudinal Gradient. Hereditas, 157(4): 1-11.

Yamika, W.S.D., Aini, N. & Waluyo, B. 2019. Physalis peruviana L. Growth, Yield and Phytochemical Content: A Review. Agricultural Reviews, 40(4): 324-328.

Yan, H. Shah, S.S., Zhao, W. & Liu, F. 2020. Variations in Water Relations, Stomatal Characteristics, and Plant Growth between Quinoa and Pea under Salt-Stress Conditions. Pakistan Journal of Botany, 52: 1–7.

Yassin, M., El Sabagh, A., Mekawy, A. M. M., Islam, M. S., Hossain, A., Barutcular, C., Alharby, H., Bamagoos, A., Liu, L., Ueda, A. & Saneoka, H. 2017. Comparative Performance of Two Bread Wheat (Triticum Aestivum L.) Genotypes under Salinity Stress. Applied Ecology and Environmental Research, 17(2): 5029-5041.

Yildrim, E., Karlidag, H. & Dursun, A. 2011. Salt Tolerance of Physalis during Germination and Seedling Growth. Pakistan Journal of Botany, 43(6): 2673-2676.

Yu, X., Shi, P., Hui, C., Miao, L., Liu, C., Zhang, Q. & Feng, C. 2019. Effects of Salt Stress on the Leaf Shape and Scaling of Pyrus betulifolia Bunge. Symmetry, 11:991.

Yue, L.J., Li, S.X., Ma, Q., Zhou, X.R., Wu, G.Q., Bao, A.K., Zhang, J.L. & Wang, S.M. 2012. NaCl Stimulates Growth and Alleviates Water Stress in The Xerophyte Zygophyllum xanthoxylum. Journal of Arid Environment, 87: 153–160.

Yuwono, NW. 2009. Membangun Kesuburan Tanah Di Lahan Marginal. Jurnal Ilmu Tanah dan Lingkungan Vol. 9(2), p: 137-141

Zahra, N., Wahid, A., Shaukat, K., Hafeez, M.B., Batool, A. & Hasanuzzaman, M. 2021. Plant Growth Promoters Mediated Quality and Yield Attributes of Milk Thistle (Silybum marianum L.) Ecotypes under Salinity Stress. Science Report, 11: 23200.

Zhang M, Fang Y, Ji Y, Jiang Z. & Wang, L. 2013. Effects of Salt Stress on Ion Content, Antioxidant Enzymes and Protein Profile in Different Tissues of Broussonetia papyrifera. South Africa Journal of Botany, 85: 1–9.

Zheng, X., Long, W., Liu, G., Zhang, X. & Yang, X. 2012. Effect of Seabuckthorn (Hippophae rhamnoides ssp. sinensis) Leaf Extract on the Swimming Endurance and Exhaustive Exercise-induced Oxidative Stress of Rats. Journal of Science Food and Agriculture, 92: 736-742.

BISAC

  • SCI011000 Science / Life Sciences / Botany
  • SCI008000 Science / Life Sciences / Biology

Published

March 27, 2025